【AI系统】谷歌 TPU v3 POD 形态
TPU v3 是 TPU v2 的增强版,主要改进包括:MXU 数量翻倍至 4 个,时钟频率提升 30%,内存带宽扩大 30%,容量翻倍,芯片间带宽增加 30%,可连接节点数增至 4 倍。TPU v3 通过采用水冷系统,不仅提高了功率,还优化了温度管理,显著提升了计算能力和能效。TPU v3 Pod 由 1024 个 TPU v3 组成,算力达 100 PFLOPS,适用于大规模神经网络训练。
【AI系统】谷歌 TPU v1-脉动阵列
本文详细分析了谷歌TPU v1的架构与设计,重点介绍了其核心组件如DDR3 DRAM、矩阵乘法单元(MXU)、累加器及控制指令单元,特别是MXU中脉动阵列的工作机制。通过对比TPU v1与CPU、GPU在服务器环境中的表现,展示了TPU v1在提升神经网络计算吞吐量方面的显著优势,尤其是在低延迟和高能效方面。
【AI系统】谷歌 TPU 历史发展
本文详细介绍了谷歌TPU的发展历程及其在AI领域的应用。TPU是谷歌为加速机器学习任务设计的专用集成电路,自2016年首次推出以来,经历了多次迭代升级,包括TPU v1、v2、v3、v4及Edge TPU等版本。文章分析了各代TPU的技术革新,如低精度计算、脉动阵列、专用硬件设计等,并探讨了TPU在数据中心和边缘计算中的实际应用效果,以及谷歌如何通过TPU推动移动计算体验的进步。
【AI系统】NV Switch 深度解析
英伟达的NVSwitch技术是高性能计算领域的重大突破,旨在解决多GPU系统中数据传输的瓶颈问题。通过提供比PCIe高10倍的带宽,NVLink实现了GPU间的直接数据交换,减少了延迟,提高了吞吐量。NVSwitch则进一步推动了这一技术的发展,支持更多NVLink接口,实现无阻塞的全互联GPU系统,极大提升了数据交换效率和系统灵活性,为构建强大的计算集群奠定了基础。
【AI系统】NVLink 原理剖析
随着AI技术的发展,大模型参数量激增,对底层硬件和网络架构提出新挑战。高效训练这些模型需要大规模GPU集群及高速网络连接,以实现快速数据交换。然而,网络瓶颈限制了GPU性能的充分发挥,表明单纯增加GPU数量不能线性提升算力。因此,算存互连和算力互连技术成为关键,如PCIe、NVLink和NVSwitch等,它们通过提高数据传输速度和效率,支持大规模并行计算,解决了大规模GPU集群中的通信延迟问题,推动了万亿级模型训练的实现。
RAID 的镜像是一种冗余技术
镜像是冗余技术的一种,通过在不同磁盘上创建数据的完整副本,提供数据保护。这种方法无需额外计算和校验,故障恢复迅速,支持并发读取,提高读I/O性能,但写入性能受影响。镜像技术虽提供高数据安全性,却需双倍存储空间,成本较高,适用于关键数据保护。此外,镜像可通过“拆分”实现几乎零备份窗口的数据备份。
【AI系统】NPU 基础
近年来,AI技术迅猛发展,催生了NPU和TPU等AI专用处理器,这些处理器专为加速深度学习任务设计,相比传统CPU和GPU,展现出更高效率和性能。本文将介绍AI芯片的概念、技术发展、部署方式及应用场景,涵盖从数据中心到边缘设备的广泛领域,探讨其如何成为AI技术落地的关键推手。