PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4721内容
Ascend Extension for PyTorch是个what?
Ascend Extension for PyTorch 是针对华为昇腾处理器的PyTorch框架适配插件,旨在让PyTorch开发者能充分利用昇腾AI处理器的强大计算能力。此扩展通过最小化对原生PyTorch的改动,实现了对昇腾NPU的支持,包括动态图特性、自动微分等功能的完整继承,并提供了与原生PyTorch一致的使用体验。项目详情及源码可在昇腾社区获取。
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
StableAnimator:复旦联合微软等机构推出的端到端身份一致性视频扩散框架
StableAnimator是由复旦大学、微软亚洲研究院、虎牙公司和卡内基梅隆大学联合推出的端到端身份一致性视频扩散框架。该框架能够根据一张参考图像和一系列姿态,直接合成高保真度且保持人物身份一致性的视频,无需任何后处理工具。本文详细介绍了StableAnimator的主要功能、技术原理以及如何运行该框架。
Delta-CoMe:清华联合OpenBMB等高校开源的新型增量压缩算法
Delta-CoMe是由清华大学NLP实验室联合OpenBMB开源社区、北京大学和上海财经大学提出的新型增量压缩算法。该算法通过结合低秩分解和低比特量化技术,显著减少了大型语言模型的存储和内存需求,同时保持了模型性能几乎无损。Delta-CoMe特别适用于处理数学、代码和多模态等复杂任务,并在推理速度上有所提升。
|
8天前
| |
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
|
9天前
|
【AI系统】图算 IR
本文全面介绍了计算图的概念及其在AI框架中的应用,涵盖计算图的基本构成、与自动微分的关系、静态图与动态图的生成及特点,以及计算图对AI编译器的重要作用。文章详细解析了计算图的结构,包括张量和算子的角色,探讨了AI框架如何通过计算图实现自动微分,同时对比了静态图和动态图的优缺点,指出了计算图在优化AI编译器性能方面的关键作用。
|
12天前
|
模型训练的通用性
模型训练的通用性指模型在不同任务、领域或数据集上的适应能力。通过预训练模型、迁移学习、多任务学习、任务无关特征提取、灵活的模型架构、正则化、数据增强、超参数调优等方法,可以提升模型的通用性和泛化能力,使其在新任务上表现更佳。
ViewExtrapolator:南洋理工联合UCAS团队推出的新型视图合成方法
南洋理工大学与UCAS团队联合推出了一种新型视图合成方法——ViewExtrapolator。该方法基于稳定视频扩散(SVD)技术,能够在不进行微调的情况下,高效生成超出训练视图范围的新视角图像,显著减少伪影,提升视觉质量。ViewExtrapolator具有广泛的应用前景,尤其在虚拟现实、3D内容创建、电影制作等领域。
AutoVFX:自然语言驱动的视频特效编辑框架
AutoVFX是一个先进的自然语言驱动的视频特效编辑框架,由伊利诺伊大学香槟分校的研究团队开发。该框架能够根据自然语言指令自动创建真实感和动态的视觉特效(VFX)视频,集成了神经场景建模、基于大型语言模型(LLM)的代码生成和物理模拟技术。本文详细介绍了AutoVFX的主要功能、技术原理以及如何运行该框架。
|
15天前
|
【AI系统】AI 系统与程序代码关系
本文探讨了AI系统与程序代码之间的关系,通过PyTorch实现LeNet5神经网络模型为例,详细介绍了AI训练流程原理、网络模型构建方法、算子实现的系统问题以及AI系统执行的具体计算过程。文章不仅解释了神经网络的前向传播和反向传播机制,还深入分析了算子在AI框架中的作用及其底层实现,包括卷积层的具体计算和优化问题。此外,文章对比了使用PyTorch与直接使用cuDNN+CUDA编程实现神经网络模型的差异,强调了AI框架在提高开发效率、自动化内存管理和实现自动微分等方面的重要性。
免费试用