数据挖掘

首页 标签 数据挖掘
# 数据挖掘 #
关注
25786内容
|
16天前
|
数据挖掘/深度学习-高校实训解决方案
云原生一站式机器学习/深度学习/大模型AI平台,支持sso登录,多租户,大数据平台对接,notebook在线开发,拖拉拽任务流pipeline编排,多机多卡分布式训练,超参搜索,推理服务VGPU,边缘计算,serverless,标注平台,自动化标注,数据集管理,大模型微调,vllm大模型推理,llmops,私有知识库,AI模型应用商店,支持模型一键开发/推理/微调,支持国产cpu/gpu/npu芯片,支持RDMA,支持pytorch/tf/mxnet/deepspeed/paddle/colossalai/horovod/spark/ray/volcano分布式,私有化部署。
|
16天前
|
探索人工智能在医疗诊断中的应用
本文将探讨AI技术如何革新传统医疗诊断,通过深度学习模型提高疾病预测准确性,并分析AI在医疗领域面临的挑战与未来趋势。我们将深入了解AI技术背后的原理,以及它如何帮助医生进行更精准的诊断和治疗。
|
16天前
| |
基于图论算法有向图PageRank与无向图Louvain算法构建指令的方式方法 用于支撑qwen agent中的统计相关组件
利用图序列进行数据解读,主要包括节点序列分析、边序列分析以及结合节点和边序列的综合分析。节点序列分析涉及节点度分析(如入度、出度、度中心性)、节点属性分析(如品牌、价格等属性的分布与聚类)、节点标签分析(如不同标签的分布及标签间的关联)。边序列分析则关注边的权重分析(如关联强度)、边的类型分析(如管理、协作等关系)及路径分析(如最短路径计算)。结合节点和边序列的分析,如子图挖掘和图的动态分析,可以帮助深入理解图的结构和功能。例如,通过子图挖掘可以发现具有特定结构的子图,而图的动态分析则能揭示图随时间的变化趋势。这些分析方法结合使用,能够从多个角度全面解读图谱数据,为决策提供有力支持。
2024年CRM系统排行榜:领先品牌与市场趋势
随着数字化转型加速,CRM系统成为企业提升客户关系管理效率、增强竞争力的关键工具。本文从品牌影响力、产品功能、用户体验等多维度,综合分析2024年市场上的主流CRM系统,如销售易、八骏科技、天衣云等,为企业选择合适的CRM解决方案提供参考。
国产CRM:如何挑选最佳替代品?
在数字化时代,CRM系统对企业至关重要。随着国内技术进步和政策支持,国产CRM系统逐渐崛起,展现出与国际品牌竞争的实力。本文探讨了国产CRM崛起的背景、国际品牌的困境、选择国产CRM的标准及推荐品牌“销售易”,强调了功能适用性、可扩展性、易用性、数据安全和服务支持的重要性。选择合适的国产CRM,有助于企业提升客户管理和服务水平,实现可持续发展。
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
|
16天前
|
打破传统:机器学习与神经网络获2024年诺贝尔物理学奖引发的思考
诺贝尔物理学奖首次授予机器学习与神经网络领域,标志该技术在物理学研究中的重要地位。本文探讨了这一决定对物理学研究的深远影响,包括数据分析、理论物理突破及未来科研方向的启示,同时分析了其对学术跨界合作与全球科研产业的影响。
|
16天前
|
机器学习核心:监督学习与无监督学习
本文深入解析了机器学习中的监督学习与无监督学习,涵盖理论基础、应用场景及典型算法实现,如线性回归、决策树、K均值聚类和主成分分析,并通过代码示例加深理解。适合初学者和进阶者阅读。
打破协作壁垒,Excel多人协同编辑工具带来翻天覆地的变化!
在现代办公中,团队协作和信息共享至关重要。Excel的多人协同编辑功能显著提升了工作效率,避免了版本冲突和重复劳动。市场上的Google Sheets、Airtable、板栗看板和Zoho Sheet等工具也提供了类似功能。以其清晰的界面和强大的数据分析能力,特别适合项目管理和进度追踪,帮助团队高效协作,达成目标。
免费试用