开源大数据平台 E-MapReduce
阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。
云上StarRocks,极速湖仓meetup - 北京站
来自水滴筹、猿辅导、阿里云 EMR 团队和 StarRocks 社区的技术专家,针对开源 OLAP 技术架构、 StarRocks 产品硬核技术及 EMR StarRocks 进行分享。EMR Serverless StarRocks 免费公测讲师/嘉宾简介水滴筹、猿辅导、阿里云 EMR 团队和 StarRocks 社区的技术专家
StarRocks 3.0 极速统一的湖仓新范式
讲师简介张友东:StarRocks Active Contributor内容简介在线讲解从 shared-nothing 到 shared-data 的湖仓分析新范式如何帮助用户实现“极速统一“的价值。动手实践EMR Serverless StarRocks 免费测试https://developer.aliyun.com/article/1191440
阿里云EMR StarRocks 线上发布会
2022年5月11日14:00,阿里云EMR StarRocks 产品线上发布会重磅开启,精彩不容错过!阿里云EMR-StarRocks 是 StarRocks 授权阿里云的一款新一代开源OLAP产品,致力于构建极速统一分析体验,满足企业用户的多种数据分析场景。讲师/嘉宾简介本次发布会邀请到了来自阿里云、StarRocks、众安保险的产品技术专家,详细介绍 EMR StarRocks 的功能优势、应用场景以及落地实践,揭秘 StarRocks 极速数据湖分析能力背后的技术支撑和未来规划。
使用Databricks进行零售业需求预测的应用实践【Databricks 数据洞察公开课】
从零售业需求预测痛点、商店商品模型预测的实践演示介绍Databricks如何助力零售商进行需求、库存预测,实现成本把控和营收增长。讲师/嘉宾简介李锦桂--阿里云开源大数据平台开发工程师
如何快速搭建云原生企业级数据湖架构及实践分享
众所周知,数据湖技术在大数据领域炙手可热,随着在云上的广泛部署和应用,其业务价值逐渐获得业界共识。如何快搭建数据湖架构被越来越多的企业探讨。本次演讲主要分享快速搭建云原生企业级数据湖架构及实践分享。讲师简介王震 -- 阿里云计算平台事业部 开源大数据平台 技术专家
阿里云EMR系列直播 - 精讲 Databricks数据洞察(介绍及案例分析)
Databricks数据洞察是企业级全托管的Spark高性能大数据分析平台,来自Apache Spark创始公司Databricks。引擎采用Databricks Runtime,性能与社区版相比,最高可达50倍提升,高效而稳定。本次直播将重点展开介绍该产品,并针对代表性案例进行分析。讲师介绍韩宗泽(棕泽),阿里云技术专家,计算平台事业部开放平台-生态企业团队负责人
OAP Spark 优化介绍: 通过索引和缓存优化交互式查询性能
讲师介绍:陈海锋,英特尔亚太研发有限公司大数据部门的高级软件架构师,开发经理,主要研究和关注基于Hadoop和Spark的大数据框架的分析和优化,Apache社区的长期贡献者。沈祥翔,英特尔亚太研发有限公司大数据部门的高级软件工程师,主要担任OAP项目的开发。分享介绍:简单介绍OAP的总体蓝图。同时详细介绍其中的一个具体优化,使用索引和缓存来解决交互式查询性能挑战。英特尔和社区合作,为Spark SQL实现了索引和数据源缓存,通过为关键查询列创建并存储完整的B +树索引,并使用智能的细粒度数据缓存策略,我们可以极大的提升基于Spark SQL的交互式查询的性能。
存储计算分离场景的计算适应优化
讲师介绍王道远,花名健身,阿里云EMR技术专家,Apache Spark活跃贡献者,主要关注大数据计算优化相关工作。直播简介:本次分享会介绍云上大数据处理的存储计算分离特征,分析传统大数据处理中数据本地化与存储计算分离场景的区别,以及在存储计算分离场景中阿里云EMR的相关优化。
关于 JindoFS 最新的 OTS 方案
本次直播主要介绍JindoFS的元数据的后端演化。包括JindoFS的架构以及使用场景、JindoFS 元数据的不同的后端支持,以及JindoFS 在云上环境如何支持 OTS 作为元数据后端。讲师介绍殳鑫鑫,花名辰石,阿里巴巴计算平台事业部EMR团队技术专家,目前从事大数据存储以及Spark相关方面的工作。
【Spark Relational Cache实现亚秒级响应的交互式分析】
2019杭州云栖大会大数据生态专场中的分享《Spark Relational Cache实现亚秒级响应的交互式分析》Apache Spark被广泛用于超大规模的数据分析处理,在交互式分析等时间敏感的场景中,超大规模数据量的处理时间可能无法满足用户快速响应的需求。通过数据的预组织和预计算,将频繁访问的数据和计算提前执行并保存在Relational Cache中,优化后续特定模式的查询,可以显著提高查询速度,实现亚秒级的响应。本议题主要介绍Spark Relational Cache的实现原理和使用场景。主讲人王道远(健身),阿里云EMR技术专家,Apache Spark活跃贡献者,主要关注大数据计算优化相关工作。
EMR StarRocks OLAP 数据分析场景
EMR StarRocks 线上公开课 第3期直播亮点EMR Serverless StarRocks 极速分析存算分离架构升级Trino兼容,无缝替换讲师/嘉宾简介周康(榆舟)阿里云高级技术专家开源大数据OLAP引擎团队负责人StarRocks TSC Member
EMR StarRocks VS 开源版本功能差异介绍
EMR StarRocks 线上公开课 第2期直播亮点Serverless StarRocks 客户案例分享Serverless StarRocks VS 开源版本能力介绍讲师简介弘锐 - 阿里云 E-MapReduce 产品专家
Lakehouse Meetup “整合Pulsar和Lakehouse数据:使用Connector将Pulsar Topic中的数据Sink到Lakehouse storage”
Lakehouse Meetup “整合Pulsar和Lakehouse数据:使用Connector将Pulsar Topic中的数据Sink到Lakehouse storage”张勇 StreamNative 高级工程师Apache Pulsar Committer
Lakehouse Meetup “Apache Pulsar 的湖仓一体方案:Pulsar 的 Lakehouse 分层存储集成详解”
Lakehouse Meetup “Apache Pulsar 的湖仓一体方案:Pulsar 的 Lakehouse 分层存储集成详解”陈航StreamNative 高级工程师Apache Pulsar PMC member
使用 Databricks 进行营销效果归因分析的应用实践【Databricks 数据洞察公开课】
本次课程将介绍如何试用Databricks进行广告效果归因分析,完成一站式的部署机器学习,包括数据ETL、数据校验、模型训练/评测/应用等全流程。讲师/嘉宾简介冯加亮,阿里云开源大数据平台技术工程师
如何使用Delta Lake构建批流一体数据仓库【Databricks 数据洞察公开课】
从场景痛点、实践操作介绍如何使用Delta Lake同时处理批作业和流作业,快速搭建批流一体数据仓库。讲师/嘉宾简介讲师:佳亮,阿里云开源大数据平台技术工程师
Delta Lake数据湖基础介绍(开源版)【Databricks 数据洞察公开课】
公开课第四讲:本期公开课针对社区版本Delta Lake提供的几大核心特性进行讲解,并通过示例演示如何使用这些特性。产品技术咨询https://survey.aliyun.com/apps/zhiliao/VArMPrZOR加入技术交流群下期预告《Delta Lake数据湖基础介绍(商业版)》讲师/嘉宾简介筱龙阿里云开源大数据平台技术专家
企业级全托管 Spark 大数据分析平台及案例分析【Databricks 数据洞察公开课】
从产品介绍、功能、典型场景、应用案例、Demo演示等多方面入手,介绍如何基于Databricks 数据洞察——Apache Spark的全托管数据分析平台,满足数据湖分析、实时数仓、离线数仓、BI数据分析、AI机器学习等场景需求。产品技术咨询https://survey.aliyun.com/apps/zhiliao/VArMPrZOR加入技术交流群讲师/嘉宾简介棕泽阿里云技术专家阿里云开源大数据生态企业研发负责人
Apache Flink x Iceberg Meetup 上海站
问题与互动页面(戳我进入)4月17日,Apahce Flink 社区2021年的首场线下 Meetup 正式开启!本次Apahce Flink x Iceberg Meetup邀请了来自阿里巴巴、腾讯、Dell、汽车之家的四位技术专家,聚焦 Flink x Iceberg 数据湖应用主题,围绕湖仓一体架构实践、Iceberg和对象存储的数据湖构建方案、超大规模数据入湖实践以及数据入湖面临的挑战等全方位剖析数据湖生产应用难题!活动亮点:超多实用干货,从数据湖应用面临的挑战入手,解析数据湖架构升级、对象存储与 Iceberg 的数据湖生态以及百亿数据入湖实践,轻松 get 数据湖正确打开方式;活动形式多样化,线下线上同步开启,同城可参与线下 Meetup 面对面交流,异地也可在线观看直播,精彩内容不错过;丰富周边等你拿,报名参加就有机会获得超多 Flink 社区定制的精美周边!Meetup 技术交流群:(Apache Flink 社区)活动议程合作伙伴
TFPark: Distributed TensorFlow in Production on Apache Spark
TFPark是开源AI平台Analytics Zoo中一个模块,它的可以很方便让用户在Spark集群中分布式地进行TensorFlow模型的训练和推断。一方面,TFPark利用Spark将TensorFlow 定义的AI训练或推理任务无缝的嵌入到用户的大数据流水线中,而无需对现有集群做任何修改;另一方面TFPark屏蔽了复杂的分布式系统逻辑,可以将单机开发的AI应用轻松扩展到几十甚至上百节点上。本次分享将介绍TFPark的使用,内部实现以及在生产环境中的实际案例。 讲师简介: 汪洋,英特尔大数据团队的机器学习工程师,专注于分布式机器学习框架和应用。他是Analytics Zoo和BigDL的核心贡献者之一。
Hadoop 小文件/冷文件分析
庞大的小文件和冷文件数量会对HDFS的性能产生不利影响,严重时甚至影响业务稳定性,这个主题将介绍对大容量HDFS进行小文件和冷文件分析的方法,并基于分析结果可以采取哪些处理措施。讲师:郭聪,花名析源,阿里云计算平台事业部技术专家。目前主要从事大数据领域APM产品的研发工作。
JindoFS 存储策略和读写优化
本次分享主要介绍数据读写在计算存储分离的场景下所面临的常见问题以及相关的优化手段,并结合应用场景介绍对数据缓存加速的相关技术和策略。讲师介绍姚舜扬,花名辰山,阿里巴巴计算平台事业部 EMR 高级开发工程师,目前从事大数据存储方面的开发和优化工作
Analytics Zoo上的分布式TensorFlow训练AI玩FIFA足球游戏
近年来,由于对通用人工智能研究的潜在价值,训练AI玩游戏一直是一个火热的研究领域。FIFA实时视频游戏场景复杂,需要结合图像,强化学习等多种不同的AI技术,同时也要求agents响应有实时性,因此是一个非常好的试验场,可以用来探索不同类型的AI技术。本次分享主要介绍我们在训练AI玩FIFA视频游戏方面的一些工作。有兴趣的同学,可以提前关注此开源项目:https://github.com/intel-analytics/analytics-zoo讲师介绍:喻杉,Intel大数据分析团队机器学习工程师。她目前专注于在analytics-zoo大数据和人工智能平台上开发针对时间序列分析的自动机器学习组件。在加入intel前,她在浙江大学获得了学士和硕士学位。
【EMR打造高效云原生数据分析引擎】
EMR-Jindo 是 EMR 推出的云原生 OLAP 引擎。凭借该引擎,EMR 成为第一个云上 TPC-DS 成绩提交者。经过持续不断地内核优化,目前基于最新 EMR-Jindo 引擎的 TPC-DS 成绩又有了大幅提高,达到了3615071,成本降低到 0.76 CNY。本次分享将介绍 EMR-Jindo 引擎背后的相关技术以及以 EMR-Jindo 为核心的云上大数据架构方案。主讲人辛现银(辛庸),阿里巴巴计算平台事业部 EMR 技术专家。Apache Hadoop,Apache Spark contributor。对 Hadoop、Spark、Hive、Druid 等大数据组件有深入研究。目前从事大数据云化相关工作,专注于计算引擎、存储结构、数据库事务等内容。
【New Developments in the Open Source Ecosystem: Apache Spark 3.0 and Koalas】
Apache Spark 3.0 and Koalas的最新进展主讲人李潇,Databricks Spark 研发总监,管理一跨国团队,专注于 Apache Spark 和 Databricks Runtime 的开发和建设。他是 Apache Spark 项目管理委员会成员。本科毕业于南京理工大学,后在佛罗里达大学(University of Florida)获计算机博士学位, 曾就职于 IBM,获发明大师称号(Master Inventor),在数据处理领域发表专利十余篇。(Github: gatorsmile)
Tablestore Spark Streaming Connector -- 海量结构化数据的实时计算和处理
Tablestore是阿里云自研的云原生结构化大数据存储服务,本议题会详细介绍如何基于Tablestore的CDC技术,将大表内实时数据更新对接Spark Streaming来实现数据的实时计算和处理。最新版本的Connector会随着EMR下个版本的SDK一起开源,场景环节会结合阿里内部的业务介绍用户如何结合Tablestore和Spark来实现实时数据处理。讲师介绍朱晓然 ,Tablestore存储服务技术专家
深度解析数据湖存储方案Lakehouse架构【Databricks 数据洞察公开课】
从数据仓库、数据湖的优劣势,湖仓一体架构的应用和优势等多方面深度解析Lakehouse架构。讲师/嘉宾简介Databricks软件工程师 张泊产品技术咨询https://survey.aliyun.com/apps/zhiliao/VArMPrZOR加入技术交流群
开源大数据社区 & 阿里云 E-MapReduce 系列直播 第9期
EMR on ACK是企业级半托管的开源大数据平台,为阿里云E-MapReduce(EMR)提供了一个部署选项,允许您在阿里云容器服务Kubernetes版 (ACK) 上运行开源大数据框架。 目前支持Spark引擎的部署,结合自研的Remote shuffle service(RSS)服务组件,提供用户高稳定、高性价比、灵活的弹性计算服务。RSS解决了计算存储分离和混合架构下的shuffle稳定性和性能问题。本次直播将重点展开RSS的使用和性能展示。讲师介绍吴雪扬(枢木),阿里云高级开发工程师
第三节课:EMR 的存储解决方案
本节主要介绍EMR针对云上大数据的存储解决方案,如何为计算提供灵活高效的存储基础讲师:姚舜扬,花名辰山,阿里巴巴计算平台事业部 EMR 高级开发工程师,目前从事大数据存储方面的开发和优化工作
Intel MLlib:构建平台优化的Spark机器学习
Intel MLlib是一个为Apache Spark MLlib优化的软件包。它在保持和Spark MLlib兼容的同时,在底层利用原生算法库来实现在CPU和GPU上的最优化算法,同时使用Collective Communication来实现效率更高的节点间通信。我们的初步结果表明,该软件包在最小化应用改动的基础上,可以极大地提升MLlib算法的性能。讲师介绍吴晓昶英特尔亚太研发有限公司大数据部门的高级软件工程师,主要研究方向为并行计算,大数据系统和机器学习,CPU和GPU的性能优化。目前关注Spark和机器学习的系统性能优化。