首先是计算存储分离技术。通过解耦计算和存储,业务方可以自由选择资源配比,并按需扩缩容。
其次是弹性的资源组,针对有阶段性波峰波谷的负载特征,业务侧可以灵活调整资源配额,以不同的时间维度制定不同的资源组扩缩容计划,并且基于对查询负载资源需求的估计,按需进行资源组的选择。
第三是自适应优化,数据的实时性和体量巨大的历史数据会让传统依赖统计信息的优化手段失效,自适应优化在传统优化方式的基础之上会动态的根据执行信息中反馈的数据特征调整执行计划,使得整个执行计划达到高效状态。
第四是冷热分层和开放存储。一方面存储成本决定了数据规模和集群规模,将数据的维护成本降低在可控的范围内,业务才有机会通过数据分析寻找数据价值。另一方面对业界开源生态格式的兼容,让系统具备了一定的开放能力,不同的系统间可以通过开源的格式进行交互,降低业务 ETL 的复杂性。
资料来源:《数据库:从趋势到实践》,链接:https://developer.aliyun.com/topic/download?id=1113
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。