开发指南—DDL语句—分区表语法—CREATE TABLE

简介: 本文主要介绍使用DDL语句进行建表的语法、子句、参数和基本方式

本文主要介绍使用DDL语句进行建表的语法、子句、参数和基本方式。

语法


CREATE [PARTITION] TABLE [IF NOT EXISTS] tbl_name
    (create_definition, ...)
    [table_options]
    [table_partition_definition]
create_definition:
    col_name column_definition
  | mysql_create_definition
  | [UNIQUE] GLOBAL INDEX index_name [index_type] (index_sharding_col_name,...)
      [global_secondary_index_option]
      [index_option] ...
index_sharding_col_name:
    col_name [(length)] [ASC | DESC]
index_option:
    KEY_BLOCK_SIZE [=] value
  | index_type
  | WITH PARSER parser_name
  | COMMENT 'string'
index_type:
    USING {BTREE | HASH}
# 全局二级索引相关
global_secondary_index_option:
    [COVERING (col_name,...)]
    [partition_options]
# 分区表类型定义
table_partition_definition:
        single
  | broadcast
  | partition_options
# 分区策略定义
partition_options:
    PARTITION BY
          HASH({column_name | partition_func(column_name)})
        | KEY(column_list)
        | RANGE{({column_name | partition_func(column_name)}) 
        | RANGE COLUMNS(column_list)}
        | LIST{({column_name | partition_func(column_name)}) 
        | LIST COLUMNS(column_list)} }
    partition_list_spec
# 分区函数定义
partition_func:
    YEAR
  | TO_DAYS
  | TO_SECOND
  | UNIX_TIMESTAMP
  | MONTH
# 分区列表定义
partition_list_spec:
        hash_partition_list
  | range_partition_list
  | list_partition_list
# Hash / Key 分区表列定义
hash_partition_list:
    PARTITIONS partition_count
# Range / Range Columns 分区表列定义
range_partition_list:
    range_partition [, range_partition ...]
range_partition:
    PARTITION partition_name VALUES LESS THAN {(expr | value_list)} [partition_spec_options]
    
# List / List Columns 分区表列定义
list_partition_list:
    list_partition [, list_partition ...]
list_partition:
    PARTITION partition_name VALUES IN (value_list) [partition_spec_options]
partition_spec_options:
          [[STORAGE] ENGINE [=] engine_name]
        [COMMENT [=] 'string']
        [{CHARSET | CHARACTER SET} [=] charset]
        [COLLATE [=] collation]
        [TABLEGROUP [=] table_group_id]
        [LOCALITY [=] locality_option]
locality_option:
    'dn=storage_inst_id_list'
    
storage_inst_id_list:
    storage_inst_id[,storage_inst_id_list]


说明 PolarDB-X DDL语法基于MySQL语法,以上主要列出了差异部分,详细语法请参见MySQL 文档

默认自动分区

  • 建表SQL在不指定分区键的情况下,PolarDB-X默认会按主键(如果表没有指定主键,则使用隐式主键)并使用KEY分区策略进行分区,默认分区的分区数目是64。
  • 用户也可以通过指定CREATE PARTITION TABLE语法关键字进行建表,来显示让PolarDB-X选择主键进行自动分区,示例如下:
CREATE PARTITION TABLE auto_part_tbl(

id bigint not null auto_increment,
bid int,
name varchar(30),
primary key(id)
);

单表与广播表

PolarDB-X允许创建表时通过指定关键字SINGLE来建单表(不进行任何分区的表),示例如下:


CREATE TABLE single_tbl(
id bigint not null auto_increment,
bid int,
name varchar(30),
primary key(id)
) SINGLE;

PolarDB-X允许创建表时通过指定关键字BROADCAST来建广播表(该表将在所有DN节点上有一份数据完全相同的拷贝),示例如下:


CREATE TABLE broadcast_tbl(
id bigint not null auto_increment,
bid int,
name varchar(30),
primary key(id)
) BROADCAST;

分区表

PolarDB-X允许创建表时通过指定分区子句的语义,来创建符合业务需要求的分区表。从总体上,PolarDB-X支持三种类型的分区策略:

  • Hash分区策略:基于用户指定的分区列或分区函数表达式的值,使用内置的一致性哈希算法计算其哈希值并进行分区路由的策略。按是否支持使用分区函数表达式或使用多个分区列作为分区键,Hash分区策略又可以进行步细分为Hash分区与Key分区两种类型。
  • Range分区策略:基于用户指定的分区列或分区函数表达式的值,通过比较计算来确定其所落在哪些预定义分区的范围并进行分区路由的策略。按是否支持使用分区函数表达式或使用多个分区列作为分区键,Range分区策略又可以进行步细分为Range分区与Range Columns分区两种类型。
  • List分区策略:与Range分区策略类似,基于用户指定的分区列或分区函数表达式的值,通过比较计算来确定其所落在哪些预指定义分区的取值集合并进行分区路由的策略。按是否支持使用分区函数表达式或使用多个分区列作为分区键,List 分区策略又可以进行步细分为List分区与List Columns分区两种类型。

Hash分区策略

PolarDB-X按是否支持使用分区函数表达式或使用多个分区列作为分区键,Hash分区策略进行步细分为Hash分区与Key分区两种类型。

  • Hash分区Hash分区建表只支持使用一个整数类型的分区列作为分区健,但对于时间类型的分区列,它支持这些分区列外层套用一个分区函数表达式(例如,YEAR/TO_DAYS/TO_SECOND/MONTH等)来转换成整数类型。其次需要值得注意的是,Hash分区是不支持直接使用字符串类型作为分区列。如果想要按照用户ID列进行分区,预建的Hash分区数目是8,可以执行以下命令建表:
CREATE TABLE hash_tbl(
id bigint not null auto_increment,
bid int,
name varchar(30),
birthday datetime not null,
primary key(id)
)
partition by hash(bid)
partitions 8;
  • 如果想要按找用户出生日期birthday列进行分区,预建的Hash分区数目是8,可以执行以下命令建表:
CREATE TABLE hash_tbl_todays(
id bigint not null auto_increment,
bid int,
name varchar(30),
birthday datetime not null,
primary key(id)
)
PARTITION BY HASH(TO_DAYS(birthday))
PARTITIONS 8;
  • 目前,PolarDB-X的分区函数仅支持以下列表:
    • YEAR
    • TO_DAYS
    • TO_SECOND
    • MONTH
    • UNIX_TIMESTAMP
  • Key分区与Hash分区不同,使用Key分区建表,支持同时使用多个分区列作为分区键,但它不允许分区列外层套用任何分区函数表达。Key分区的分区列的类型支持比Hash分区更为丰富,支持的类型如下所示:
    • 整数类型:BIGINT/BIGINT UNSINGEDINT/INT UNSINGED/MEDIUMINT/MEDIUMINT UNSINGED/SMALLINT/SMALLINT UNSINGED/TINYINT/TINYINT UNSINGED
    • 时间类型:DATETIME/DATE/TIMESTAMP
    • 字符串类型:CHAR/VARCHR
  • 因此,Key分区是PolarDB-X的默认分区策略。
    如果想要按照用户ID列与用户出生日期列作为分区键进行分区,预建的Hash分区数目是8,可以执行以下命令建表:
CREATE TABLE key_tbl(
id bigint not null auto_increment,
bid int,
name varchar(30),
birthday datetime not null,
primary key(id)
)
PARTITION BY KEY(id, birthday)
PARTITIONS 8;

Range分区策略

PolarDB-X按照是否支持使用分区函数表达式或使用多个分区列作为分区键,将Range分区策略进一步细分为Range分区与Range Columns分区两种类型。

  • Range分区Range分区只支持使用一个整数类型的分区列作为分区健,但对于时间类型的分区列,它支持这些分区列外层套用一个分区函数表达式(例如,YEAR/TO_DAYS/TO_SECOND/MONTH等)来转换成整数类型。另外值得注意的是,Range分区是不支持直接使用字符串类型作为分区列。

    说明 Range不支持使用NULL值作为边界值。
    如果业务想按订单的日期进行Range分区,并且每个季度一个分区,可以执行以下命令建表:
CREATE TABLE orders(
id int,
order_time datetime not null)
PARTITION BY RANGE(to_days(order_time))
(
PARTITION p1 VALUES LESS THAN (to_days('2021-01-01')),
PARTITION p2 VALUES LESS THAN (to_days('2021-04-01')),
PARTITION p3 VALUES LESS THAN (to_days('2021-07-01')),
PARTITION p4 VALUES LESS THAN (to_days('2021-10-01')),
PARTITION p5 VALUES LESS THAN (to_days('2022-01-01'))
);
  • Range Columns分区Range Columns分区支持同时使用多个分区列作为分区键,但它不允许分区列外层套用任何分区函数表达。Range Columns分区的分区列的类型支持比Range分区更为丰富,支持的类型如下所示:
    • 整数类型:BIGINT/BIGINT UNSINGEDINT/INT UNSINGED/MEDIUMINT/MEDIUMINT UNSINGED/SMALLINT/SMALLINT UNSINGED/TINYINT/TINYINT UNSINGED
    • 时间类型:DATETIME/DATE
    • 字符串类型:CHAR/VARCHR
  • 说明
    • Range Columns分区目前还不支的使用TIMESTAMP类型,后续版本会完善。
    • 不支持使用NULL值作为边界值。
  • 如果业务想要按照订单ID与订单日期进行Range分区, 可以执行以下命令建表:
CREATE TABLE orders(
order_id int,
order_time datetime not null)
PARTITION BY range columns(order_id,order_time)
(
PARTITION p1 VALUES LESS THAN (10000,'2021-01-01'),
PARTITION p2 VALUES LESS THAN (20000,'2021-01-01'),
PARTITION p3 VALUES LESS THAN (30000,'2021-01-01'),
PARTITION p4 VALUES LESS THAN (40000,'2021-01-01'),
PARTITION p5 VALUES LESS THAN (50000,'2021-01-01')
);

List分区策略

与Range分区类似,PolarDB-X按是否支持使用分区函数表达式或使用多个分区列作为分区键,将List分区策略进一步细分为List分区与List Columns分区两种类型。

  • List分区List分区只支持使用一个整数类型的分区列作为分区健,但对于时间类型的分区列,它支持这些分区列外层套用一个分区函数表达式(例如,YEAR/TO_DAYS/TO_SECOND/MONTH等)来转换成整数类型。另外值得注意的是,Range分区是不支持直接使用字符串类型作为分区列。
    如果业务想按订单的日期进行List分区,并且每个季度一个分区,可以执行以下命令建表:
CREATE TABLE orders(
id int,
order_region varchar(64),
order_time datetime not null)
PARTITION BY LIST(YEAR(order_time))
(
PARTITION p1 VALUES IN (1990,1991,1992,1993,1994,1995,1996,1997,1998,1999),
PARTITION p2 VALUES IN (2000,2001,2002,2003,2004,2005,2006,2007,2008,2009),
PARTITION p3 VALUES IN (2010,2011,2012,2013,2014,2015,2016,2017,2018,2019)
);
  • List Columns分区List Columns分区支持同时使用多个分区列作为分区键,但它不允许分区列外层套用任何分区函数表达。List Columns分区的分区列的类型支持比List分区更为丰富,支持的类型如下所示:
    • 整数类型:BIGINT/BIGINT UNSINGEDINT/INT UNSINGED/MEDIUMINT/MEDIUMINT UNSINGED/SMALLINT/SMALLINT UNSINGED/TINYINT/TINYINT UNSINGED
    • 时间类型:DATETIME/DATE
    • 字符串类型:CHAR/VARCHR
  • 说明
    • List Columns分区目前还不支的使用TIMESTAMP类型,后续版本进行完善。
    • 不支持使用NULL值作为边界值。
  • 如果业务按照订单ID与订单日期进行Range分区,可以执行以下命令建表:
CREATE TABLE orders(
id int,
order_region varchar(64),
order_time datetime not null)
PARTITION BY LIST COLUMNS(order_region)
(
PARTITION p1 VALUES IN ('Hangzhou', 'Shenzhen'),
PARTITION p2 VALUES IN ('Beijing', 'Shanghai'),
PARTITION p3 VALUES IN ('Qingdao')
);

分区表数据类型

各种分区策略及其数据类型支持如下:

数据类型 Hash类型(HASH) Hash类型(KEY) Range类型(Range) Range类型(Range Columns) List类型(List) List类型(List Columns)
数值类型 TINYINT image支持 image支持 image支持 image支持 image支持 image支持
TINYINT UNSIGNED image支持 image支持 image支持 image支持 image支持 image支持
SMALLINT image支持 image支持 image支持 image支持 image支持 image支持
SMALLINT UNSIGNED image支持 image支持 image支持 image支持 image支持 image支持
MEDIUMINT image支持 image支持 image支持 image支持 image支持 image支持
MEDIUMINT UNSIGNED image支持 image支持 image支持 image支持 image支持 image支持
INT image支持 image支持 image支持 image支持 image支持 image支持
INT UNSIGNED image支持 image支持 image支持 image支持 image支持 image支持
BIGINT image支持 image支持 image支持 image支持 image支持 image支持
BIGINT UNSIGNED image支持 image支持 image支持 image支持 image支持 image支持
时间类型 DATE image分区列需要套用year/month/to_days/to_seconds函数。 image支持 image分区列需要套用year/month/to_days/to_seconds函数。 image支持 image分区列需要套用year/month/to_days/to_seconds函数。 image支持
DATETIME image分区列需要套用year/month/to_days/to_seconds函数。 image支持 image分区列需要套用year/month/to_days/to_seconds函数。 image支持 image分区列需要套用year/month/to_days/to_seconds函数。 image支持
TIMESTAMP image分区列必须要外套unix_timestamp函数配合使用。 image支持 image暂不支持 image暂不支持 image暂不支持 image暂不支持
字符串类型 CHAR image不支持 image支持 image不支持 image支持 image不支持 image支持
VARCHAR image不支持 image支持 image不支持 image支持 image不支持 image支持

参数说明

参数 说明
CHARSET | CHARACTER SET 指定表中列的默认字符集,可使用字符集如下:
  • utf8
  • utf8mb4
  • gbk
COLLATE 指定表中列的默认字符序,可使用字符序如下:
  • utf8_bin
  • utf8_general_ci
  • utf8_unicode_ci
  • gbk_bin
  • gbk_chinese_ci
  • utf8mb4_general_ci
  • utf8mb4__general_cs
  • utf8mb4_bin
  • utf8mb4_unicode_ci
TABLEGROUP 用于指定分区表所属于的表组。若不指定,会自动查找或创建与之分区方式完全一致的表组。
LOCALITY 用于指定分区表的所在DN节点。
相关文章
|
8天前
|
数据采集 人工智能 安全
|
17天前
|
云安全 监控 安全
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
292 164
|
2天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
303 155
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
233 113
|
11天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
809 6