SQL调优指南—SQL调优进阶—聚合优化和执行

简介: 本文介绍如何优化器和执行器如何处理聚合(Group-by),以达到减少数据传输量和提高执行效率的效果。

基本概念

聚合操作(Aggregate,简称Agg)语义为按照GROUP BY指定列对输入数据进行聚合的计算,或者不分组、对所有数据进行聚合的计算。PolarDB-X支持如下聚合函数:

  • COUNT
  • SUM
  • AVG
  • MAX
  • MIN
  • BIT_OR
  • BIT_XOR
  • GROUP_CONCAT

聚合(Agg)

本文介绍均为不下推的Agg的实现。如果已被下推到LogicalView中,则由存储层MySQL来选择执行方式,聚合(Agg)由两种主要的算子HashAgg和SortAgg实现。

HashAgg

HashAgg利用哈希表实现聚合:

  1. 根据输入行的分组列的值,通过Hash找到对应的分组。
  2. 按照指定的聚合函数,对该行进行聚合计算。
  3. 重复以上步骤直到处理完所有的输入行,最后输出聚合结果。


> explain select count(*) from t1 join t2 on t1.id = t2.id group by t1.name,t2.name;
Project(count(*)="count(*)")
  HashAgg(group="name,name0", count(*)="COUNT()")
    BKAJoin(condition="id = id", type="inner")
      Gather(concurrent=true)
        LogicalView(tables="t1", shardCount=2, sql="SELECT `id`, `name` FROM `t1` AS `t1`")
      Gather(concurrent=true)
        LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id`, `name` FROM `t2` AS `t2` WHERE (`id` IN ('?'))")

Explain结果中,HashAgg算子还包含以下关键信息:

  • group:表示GROUP BY字段,示例中为name,name0分别引用t1,t2表的name列,当存在相同别名会通过后缀数字区分 。
  • 聚合函数:等号(=) 前为聚合函数对应的输出列名,其后为对应的计算方法。示例中 count(*)="COUNT()" ,第一个 count(*) 对应输出的列名,随后的COUNT()表示对其输入数据进行计数。

HashAgg对应可以通过Hint来关闭:/*+TDDL:cmd_extra(ENABLE_HASH_AGG=false)*/

SortAgg

SortAgg在输入数据已按分组列排序的情况,对各个分组依次完成聚合。

  • 保证输入按指定的分组列排序(例如,可能会看到 MergeSort 或 MemSort)。
  • 逐行读入输入数据,如果分组与当前分组相同,则对其进行聚合计算。
  • 如果分组与当前分组不同,则输出当前分组上的聚合结果。

相比 HashAgg,SortAgg 每次只要处理一个分组,内存消耗很小;相对的,HashAgg 需要把所有分组存储在内存中,需要消耗较多的内存。


> explain select count(*) from t1 join t2 on t1.id = t2.id group by t1.name,t2.name order by t1.name, t2.name;

Project(count()="count()")
MemSort(sort="name ASC,name0 ASC")
HashAgg(group="name,name0", count(*)="COUNT()")
BKAJoin(condition="id = id", type="inner")
Gather(concurrent=true)
LogicalView(tables="t1", shardCount=2, sql="SELECT `id`, `name` FROM `t1` AS `t1`")
Gather(concurrent=true)
LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id`, `name` FROM `t2` AS `t2` WHERE (`id` IN ('?'))")

SortAgg对应可以通过Hint来关闭:/+TDDL:cmd_extra(ENABLE_SORT_AGG=false)/

两阶段聚合优化

两阶段聚合,即通过将Agg拆分为部分聚合(Partial Agg)和最终聚合(Final Agg)的两个阶段,先对部分结果集做聚合,然后将这些部分聚合结果汇总,得到整体聚合的结果。

如下示例的SQL中,HashAgg 中拆分出的部分聚合(PartialAgg)会被下推至MySQL上的各个分表,而其中的AVG函数也被拆分成 SUM和 COUNT 以实现两阶段的计算:


> explain select avg(age) from t2 group by name
Project(avg(age)="sum_pushed_sum / sum_pushed_count")
HashAgg(group="name", sum_pushed_sum="SUM(pushed_sum)", sum_pushed_count="SUM(pushed_count)")
Gather(concurrent=true)
LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `name`, SUM(`age`) AS `pushed_sum`, COUNT(`age`) AS `pushed_count` FROM `t2` AS `t2` GROUP BY `name`")

两阶段聚合的优化能大大减少数据传输量、提高执行效率。

总的来说,大部分场景做聚合的时候都倾向于选择HashAgg,只要当以下场景下才适合选择SortAgg做聚合:

  1. 数据比较多,内存严重不足。
  2. 聚合算子的输入已经按照Group By 列做好排序,这样做SortAgg就不需要额外排序,执行效率会更高。
  3. 当数据有严重倾斜,导致HashAgg执行效率不高,优先使用SortAgg
相关文章
分页查询和分页查询的性能优化
分页查询和分页查询的性能优化
|
Java API
Java高效找出两个大数据量List集合中的不同元素
本文将带你了解如何快速的找出两个相似度非常高的List集合里的不同元素。主要通过Java API、List集合双层遍历比较不同、借助Map集合查找三种方式,以及他们之间的执行效率情况。
2318 1
|
关系型数据库 PostgreSQL
PostgreSQL 计算字符串字符数函数(CHAR_LENGTH(str))和字符串长度函数(LENGTH(str))
PostgreSQL 计算字符串字符数函数(CHAR_LENGTH(str))和字符串长度函数(LENGTH(str))
3243 0
|
7月前
|
供应链 JavaScript BI
ERP系统源码,基于SpringBoot+Vue+ElementUI+UniAPP开发
这是一款专为小微企业打造的 SaaS ERP 管理系统,基于 SpringBoot+Vue+ElementUI+UniAPP 技术栈开发,帮助企业轻松上云。系统覆盖进销存、采购、销售、生产、财务、品质、OA 办公及 CRM 等核心功能,业务流程清晰且操作简便。支持二次开发与商用,提供自定义界面、审批流配置及灵活报表设计,助力企业高效管理与数字化转型。
664 2
ERP系统源码,基于SpringBoot+Vue+ElementUI+UniAPP开发
|
11月前
|
存储 算法 API
GraphScope 的图计算之旅
GraphScope的图计算之旅由阿里巴巴通义实验室系统研发总监徐静波分享,涵盖三个发展阶段。早期方案针对特定任务设计了多个图计算系统;2018年起整合为一站式系统GraphScope,支持图遍历、图分析和图学习;2024年演进至GraphScope Flex,采用模块化设计应对多样化的图计算需求。GraphScope持续优化性能并建设开源社区,现已支持3000多个star和100多种算法,日均处理五万多个图计算任务。未来将探索更多查询语言、存储支持及HTAP能力。
756 0
|
SQL 资源调度 分布式计算
如何让SQL跑快一点?(优化指南)
这篇文章主要探讨了如何在阿里云MaxCompute(原ODPS)平台上对SQL任务进行优化,特别是针对大数据处理和分析场景下的性能优化。
|
SQL Oracle 关系型数据库
深入解析 NOW() 与 CURRENT_DATE() 的区别
【8月更文挑战第31天】
960 1
|
存储 SQL DataWorks
实时数仓 Hologres操作报错合集之如何解决"date/time field value out of range"错误
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
canal 消息中间件 监控
[从零单排canal 02] canal 集群版+admin控制台 最新搭建姿势(基于1.1.4版本)
[从零单排canal 02] canal 集群版+admin控制台 最新搭建姿势(基于1.1.4版本)
2156 0
[从零单排canal 02] canal 集群版+admin控制台 最新搭建姿势(基于1.1.4版本)
|
存储 消息中间件 分布式计算
flink的常见知识点总结(一)
flink的常见知识点总结(一)