ClickHouse性能测试

简介: ClickHouse性能测试

ClickHouse简介

ClickHouse是战斗民族Yandex公司出品的OLAP开源数据库,简称CH,也有人简称CK,是目前市面上最快的OLAP数据库。性能远超Vertica、Sybase IQ等。

CH具有以下几个特点:

  1. 列式存储,因此数据压缩比高。
  2. 向量计算,且支持多核CPU并行计算,并且执行每个SQL时都力求榨干CPU性能。
  3. 基于Shared nothing架构,支持分布式方案。
  4. 支持主从复制架构。
  5. 兼容大部分SQL语法,其语法和MySQL尤其相近。
  6. 数据实时更新。
  7. 不支持事务,不适合高频更新数据。
  8. 建议多用宽表,但不建议总是查询整数据行中的所有列。

简言之,如果你有以下业务场景,可以考虑用CH:

  1. 海量数据,但又不希望单节点的存储空间消耗太高。
  2. 宽表,为了业务方便,可能会把很多相关数据列都整合到一个表里。
  3. 基于SQL的查询方式,提高程序的适用性和可移植性。

性能测试

我选用了CH官方提供的一个测试方案:SSBM (Star Schema Benchmark)。

测试机配置:

腾讯云CVM主机
- 标准型S5机型
- 4核16G
- 外挂500G SSD云硬盘

数据盘采用xfs文件系统,ioscheduler采用deadline方式:

[root@yejr.me]# cat /etc/fstab

/dev/vdb /data xfs defaults,noatime,nodiratime,nobarrier 0 0

[root@yejr.me]# cat /sys/block/vdb/queue/scheduler
[mq-deadline] kyber none

生成测试数据。

# 下载SSBM工具
[root@yejr.me]# git clone https://github.com/vadimtk/ssb-dbgen.git
[root@yejr.me]# cd ssb-dbgen
[root@yejr.me]# make

# 生成测试数据,机器性能和磁盘有限,所以指定 -s 100
[root@yejr.me]# ./dbgen -s 100 -T c
[root@yejr.me]# ./dbgen -s 100 -T p
[root@yejr.me]# ./dbgen -s 100 -T s
[root@yejr.me]# ./dbgen -s 100 -T l

[root@yejr.me]# wc -l *tbl
3000000 customer.tbl
1400000 part.tbl
200000 supplier.tbl

[root@yejr.me]# ls -l *tbl
-rw-r--r-- 1 root root 331529327 Mar 28 21:17 customer.tbl
-rw-r--r-- 1 root root 140642413 Mar 28 21:17 part.tbl
-rw-r--r-- 1 root root 19462852 Mar 28 21:17 supplier.tbl

创建测试表,根据CH官网提供的建表DDL直接创建即可,参考这里:Star Schema Benchmarkhttps://clickhouse.tech/docs/en/getting_started/example_datasets/star_schema/ )。

导入数据。

[root@yejr.me]# clickhouse-client --query "INSERT INTO customer FORMAT CSV" < customer.tbl
[root@yejr.me]# clickhouse-client --query "INSERT INTO part FORMAT CSV" < part.tbl
[root@yejr.me]# clickhouse-client --query "INSERT INTO supplier FORMAT CSV" < supplier.tbl
[root@yejr.me]# clickhouse-client --query "INSERT INTO lineorder FORMAT CSV" < lineorder.tbl

这是导入测试数据的耗时以及导完后表空间大小的数据。

表数据量 耗时(秒) tbl文件大小 表空间大小
customer 3,000,000 2.923 317M 116M
part 1,400,000 1.573 135M 25M
supplier 200,000 0.305 19M 7.7M
lineorder 600,037,902 837.288 67G 17G
lineorder_flat 600,037,902 2318.616
54G

只看最大的lineorder表,对tbl文件的压缩比可以达到4:1,如果是相对常规的OLTP数据库,其压缩比显然还要更高。

运行SSBM的几个标准查询耗时

SQL 耗时(秒) 扫描行数(10万) 返回行数
Q1.1 2.123 91.01 1
Q1.2 0.320 7.75 1
Q1.3 0.053 1.81 1
Q2.1 17.979 600.04 280
Q2.2 3.625 600.04 56
Q2.3 3.263 600.04 7
Q3.1 6.906 546.67 150
Q3.2 5.330 546.67 600
Q3.3 3.666 546.67 24
Q3.4 0.058 7.76 4
Q4.1 10.110 600.04 35
Q4.2 1.928 144.42 100
Q4.3 1.373 144.42 800

每次扫描这么多数据量,但这些统计分析为主的SQL查询耗时却并不大,足见CH的计算性能了。

今天先简单介绍到这里,以后有机会再继续分享。

            </div>
相关文章
|
NoSQL Cloud Native Linux
通过 RIOT 将 AWS ElastiCache 迁移到阿里云 Tair
通过 RIOT 将 AWS ElastiCache 迁移到阿里云 Tair
|
弹性计算 监控 Linux
跨云厂商网络接入&数据迁移
从华为云、腾讯云接入/搬站到阿里云网络时,暴露数据库公网 IP 有安全隐患,使用传统的 IPSec VPN 配置 VPN 网关过程繁琐,且连接带宽和速度不稳定,传输大量数据耗时很久。通过将 SAG vCPE 镜像部署在您网络的宿主机中,使宿主机作为一个 CPE(Customer-premises equipment)设备为您提供上云服务,突破了物理的限制,更加灵活地帮您将网络接入阿里云。
跨云厂商网络接入&数据迁移
|
Kubernetes 应用服务中间件 HSF
容器服务 kubernetes(ACK)中应用优雅上下线
容器服务 kubernetes(ACK)中应用优雅上下线
7784 0
pip镜像源大全及配置
在中国使用pip时,可以配置国内镜像源来提高安装速度和稳定性。以下是一些常见的国内镜像源:
19830 0
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
消息中间件 网络协议 开发工具
MQ产品使用合集之rocketmq5.x只有tcp接入点吗,python sdk需要http接入点,请问怎么使用
消息队列(MQ)是一种用于异步通信和解耦的应用程序间消息传递的服务,广泛应用于分布式系统中。针对不同的MQ产品,如阿里云的RocketMQ、RabbitMQ等,它们在实现上述场景时可能会有不同的特性和优势,比如RocketMQ强调高吞吐量、低延迟和高可用性,适合大规模分布式系统;而RabbitMQ则以其灵活的路由规则和丰富的协议支持受到青睐。下面是一些常见的消息队列MQ产品的使用场景合集,这些场景涵盖了多种行业和业务需求。
679 2
|
数据采集 算法 物联网
【算法精讲系列】阿里云百炼SFT微调实践分享
本内容为您提供了百炼平台SFT微调的实践案例,帮助您方便并快速借助模型微调定制化您自己的专属模型。
3695 14
|
分布式计算 DataWorks MaxCompute
DataWorks产品使用合集之在DataWorks中,如何进行批量复制操作来将一个业务流程复制到另一个业务流程
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
244 0
|
人工智能 物联网 异构计算
AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用
AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用
2257 1