利用Python做车牌号识别系统

简介: 利用Python做车牌号识别系统

利用Python做车牌号识别系统

今天就继续给大家分享一个实战案例,带大家一起用Python的PyQt5开发一个车牌自动识别系统!

首先一起来看看最终实现的车牌识别系统效果图:

下面,我们就开始介绍如何实现这款自动车牌识别系统。

一、核心功能设计

总体来说,我们首先要进行UI界面构建设计,根据车牌识别系统功能进行画面排版布局;其次我们的这款车牌识别系统的主要功能车辆图片读取识别显示、图片中车牌ROI区域获取、车牌识别结果输出显示。

对于结果输出显示,我们主要包含了读取图片名称、读取录入时间、识别车牌号码、识别车牌颜色、识别车牌所属地。最后我们还可以将车牌识别系统的数据信息导出本地存储。

拆解需求,大致可以整理出核心功能如下:

UI设计排版布局

左侧区域进行识别信息显示,包含图片名称、读取录入时间、识别车牌号码、识别车牌颜色、识别车牌所属地信息
右侧可以分成3个区域,顶部区域包含窗体最小化,最大化,关闭功能;中间区域显示读取车辆图片;底部区域包含车牌显示区域、图片读取、车牌信息存储功能

车牌识别
通过读取图片进行车牌区域提取输出
车牌自动识别结果输出

车牌信息显示存储
根据自动识别结果对车牌各类信息显示
对录入识别的车辆车牌识别信息存储

二、实现步骤

  1. UI设计排版布局

根据车牌识别需要的功能,首先进行UI布局设计,我们这次还是使用的pyqt5。核心设计代码如下:

def setupUi(self, MainWindow):

MainWindow.setObjectName("MainWindow")
MainWindow.resize(1213, 670)
MainWindow.setFixedSize(1213, 670)  # 设置窗体固定大小
MainWindow.setToolButtonStyle(QtCore.Qt.ToolButtonIconOnly)
self.centralwidget = QtWidgets.QWidget(MainWindow)
self.centralwidget.setObjectName("centralwidget")
self.scrollArea = QtWidgets.QScrollArea(self.centralwidget)
self.scrollArea.setGeometry(QtCore.QRect(690, 40, 511, 460))
self.scrollArea.setWidgetResizable(True)
self.scrollArea.setObjectName("scrollArea")
self.scrollAreaWidgetContents = QtWidgets.QWidget()
self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 500, 489))
self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents")
self.label_0 = QtWidgets.QLabel(self.scrollAreaWidgetContents)
self.label_0.setGeometry(QtCore.QRect(10, 10, 111, 20))
font = QtGui.QFont()
font.setPointSize(11)
self.label_0.setFont(font)
self.label_0.setObjectName("label_0")
self.label = QtWidgets.QLabel(self.scrollAreaWidgetContents)
self.label.setGeometry(QtCore.QRect(10, 40, 481, 420))
self.label.setObjectName("label")
self.label.setAlignment(Qt.AlignCenter)
self.scrollArea.setWidget(self.scrollAreaWidgetContents)
self.scrollArea_2 = QtWidgets.QScrollArea(self.centralwidget)
self.scrollArea_2.setGeometry(QtCore.QRect(10, 10, 671, 631))
self.scrollArea_2.setWidgetResizable(True)
self.scrollArea_2.setObjectName("scrollArea_2")
self.scrollAreaWidgetContents_1 = QtWidgets.QWidget()
self.scrollAreaWidgetContents_1.setGeometry(QtCore.QRect(0, 0, 669, 629))
self.scrollAreaWidgetContents_1.setObjectName("scrollAreaWidgetContents_1")
self.label_1 = QtWidgets.QLabel(self.scrollAreaWidgetContents_1)
self.label_1.setGeometry(QtCore.QRect(10, 10, 111, 20))
font = QtGui.QFont()
font.setPointSize(11)
self.label_1.setFont(font)
self.label_1.setObjectName("label_1")
self.tableWidget = QtWidgets.QTableWidget(self.scrollAreaWidgetContents_1)
self.tableWidget.setGeometry(QtCore.QRect(10, 40, 651, 581))  # 581))
self.tableWidget.setObjectName("tableWidget")
self.tableWidget.setColumnCount(5)
self.tableWidget.setColumnWidth(0, 140)  # 设置1列的宽度
self.tableWidget.setColumnWidth(1, 130)  # 设置2列的宽度
self.tableWidget.setColumnWidth(2, 110)  # 设置3列的宽度
self.tableWidget.setColumnWidth(3, 90)  # 设置4列的宽度
self.tableWidget.setColumnWidth(4, 181)  # 设置5列的宽度
self.tableWidget.setHorizontalHeaderLabels(["图片名称", "录入时间", "车牌号码", "车牌类型", "车牌信息"])
self.tableWidget.setRowCount(self.RowLength)
self.tableWidget.verticalHeader().setVisible(False)  # 隐藏垂直表头)
self.tableWidget.setEditTriggers(QAbstractItemView.NoEditTriggers)
self.tableWidget.raise_()
self.scrollArea_2.setWidget(self.scrollAreaWidgetContents_1)
self.scrollArea_3 = QtWidgets.QScrollArea(self.centralwidget)
self.scrollArea_3.setGeometry(QtCore.QRect(690, 510, 341, 131))
self.scrollArea_3.setWidgetResizable(True)
self.scrollArea_3.setObjectName("scrollArea_3")
self.scrollAreaWidgetContents_3 = QtWidgets.QWidget()
self.scrollAreaWidgetContents_3.setGeometry(QtCore.QRect(0, 0, 339, 129))
self.scrollAreaWidgetContents_3.setObjectName("scrollAreaWidgetContents_3")
self.label_2 = QtWidgets.QLabel(self.scrollAreaWidgetContents_3)
self.label_2.setGeometry(QtCore.QRect(10, 10, 111, 20))
font = QtGui.QFont()
font.setPointSize(11)
self.label_2.setFont(font)
self.label_2.setObjectName("label_2")
self.label_3 = QtWidgets.QLabel(self.scrollAreaWidgetContents_3)
self.label_3.setGeometry(QtCore.QRect(10, 40, 321, 81))
self.label_3.setObjectName("label_3")
self.scrollArea_3.setWidget(self.scrollAreaWidgetContents_3)
self.scrollArea_4 = QtWidgets.QScrollArea(self.centralwidget)
self.scrollArea_4.setGeometry(QtCore.QRect(1040, 510, 161, 131))
self.scrollArea_4.setWidgetResizable(True)
self.scrollArea_4.setObjectName("scrollArea_4")
self.scrollAreaWidgetContents_4 = QtWidgets.QWidget()
self.scrollAreaWidgetContents_4.setGeometry(QtCore.QRect(0, 0, 159, 129))
self.scrollAreaWidgetContents_4.setObjectName("scrollAreaWidgetContents_4")
self.pushButton_2 = QtWidgets.QPushButton(self.scrollAreaWidgetContents_4)
self.pushButton_2.setGeometry(QtCore.QRect(20, 50, 121, 31))
self.pushButton_2.setObjectName("pushButton_2")
self.pushButton = QtWidgets.QPushButton(self.scrollAreaWidgetContents_4)
self.pushButton.setGeometry(QtCore.QRect(20, 90, 121, 31))
self.pushButton.setObjectName("pushButton")
self.label_4 = QtWidgets.QLabel(self.scrollAreaWidgetContents_4)
self.label_4.setGeometry(QtCore.QRect(10, 10, 111, 20))
font = QtGui.QFont()
font.setPointSize(11)
self.label_4.setFont(font)
self.label_4.setObjectName("label_4")
self.scrollArea_4.setWidget(self.scrollAreaWidgetContents_4)
MainWindow.setCentralWidget(self.centralwidget)
self.statusbar = QtWidgets.QStatusBar(MainWindow)
self.statusbar.setObjectName("statusbar")
MainWindow.setStatusBar(self.statusbar)
self.retranslateUi(MainWindow)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
self.retranslateUi(MainWindow)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
self.pushButton.clicked.connect(self.__openimage)  # 设置点击事件
self.pushButton.setStyleSheet('''QPushButton{background:#222225;border-radius:5px;}QPushButton:hover{background:#2B2B2B;}''')
self.pushButton_2.clicked.connect(self.__writeFiles)  # 设置点击事件
self.pushButton_2.setStyleSheet('''QPushButton{background:#222225;border-radius:5px;}QPushButton:hover{background:#2B2B2B;}''')
self.retranslateUi(MainWindow)
self.close_widget = QtWidgets.QWidget(self.centralwidget)
self.close_widget.setGeometry(QtCore.QRect(1130, 0, 90, 50))
self.close_widget.setObjectName("close_widget")
self.close_layout = QGridLayout()  # 创建左侧部件的网格布局层
self.close_widget.setLayout(self.close_layout)  # 设置左侧部件布局为网格
self.left_close = QPushButton("")  # 关闭按钮
self.left_close.clicked.connect(self.close)
self.left_visit = QPushButton("")  # 空白按钮
self.left_visit.clicked.connect(MainWindow.big)
self.left_mini = QPushButton("")  # 最小化按钮
self.left_mini.clicked.connect(MainWindow.mini)
self.close_layout.addWidget(self.left_mini, 0, 0, 1, 1)
self.close_layout.addWidget(self.left_close, 0, 2, 1, 1)
self.close_layout.addWidget(self.left_visit, 0, 1, 1, 1)
self.left_close.setFixedSize(15, 15)  # 设置关闭按钮的大小
self.left_visit.setFixedSize(15, 15)  # 设置按钮大小
self.left_mini.setFixedSize(15, 15)  # 设置最小化按钮大小
self.left_close.setStyleSheet(
    '''QPushButton{background:#F76677;border-radius:5px;}QPushButton:hover{background:red;}''')
self.left_visit.setStyleSheet(
    '''QPushButton{background:#F7D674;border-radius:5px;}QPushButton:hover{background:yellow;}''')
self.left_mini.setStyleSheet(
    '''QPushButton{background:#6DDF6D;border-radius:5px;}QPushButton:hover{background:green;}''')

QtCore.QMetaObject.connectSlotsByName(MainWindow)
self.ProjectPath = os.getcwd()  # 获取当前工程文件位置
self.scrollAreaWidgetContents.setStyleSheet(sc)
self.scrollAreaWidgetContents_3.setStyleSheet(sc)
self.scrollAreaWidgetContents_4.setStyleSheet(sc)
b =             '''
     color:white;
     background:#2B2B2B;
    '''
self.label_0.setStyleSheet(b)
self.label_1.setStyleSheet(b)
self.label_2.setStyleSheet(b)
self.label_3.setStyleSheet(b)
MainWindow.setWindowOpacity(0.95)  # 设置窗口透明度
MainWindow.setAttribute(Qt.WA_TranslucentBackground)
MainWindow.setWindowFlag(Qt.FramelessWindowHint)  # 隐藏边框

def retranslateUi(self, MainWindow):

_translate = QtCore.QCoreApplication.translate
MainWindow.setWindowTitle(_translate("MainWindow", "车牌识别系统"))
self.label_0.setText(_translate("MainWindow", "原始图片:"))
self.label.setText(_translate("MainWindow", ""))
self.label_1.setText(_translate("MainWindow", "识别结果:"))
self.label_2.setText(_translate("MainWindow", "车牌区域:"))
self.label_3.setText(_translate("MainWindow", ""))
self.pushButton.setText(_translate("MainWindow", "打开文件"))
self.pushButton_2.setText(_translate("MainWindow", "导出数据"))
self.label_4.setText(_translate("MainWindow", "事件:"))
self.scrollAreaWidgetContents_1.show()
  1. 车牌识别

接下来我们需要实现两个核心功能,包括获取车牌ROI区域和车牌自动识别功能。

车牌ROI区域提取:

根据读取的车辆图片,预处理进行车牌ROI区域提取,主要通过Opencv的图像处理相关知识点来完成。主要包括对图像去噪、二值化、边缘轮廓提取、矩形区域矫正、蓝绿黄车牌颜色定位识别。核心代码如下:

预处理

def pretreatment(self, car_pic):

if type(car_pic) == type(""):
    img = self.__imreadex(car_pic)
else:
    img = car_pic
pic_hight, pic_width = img.shape[:2]

if pic_width > self.MAX_WIDTH:
    resize_rate = self.MAX_WIDTH / pic_width
    img = cv2.resize(img, (self.MAX_WIDTH, int(pic_hight * resize_rate)),
                     interpolation=cv2.INTER_AREA)  # 图片分辨率调整
blur = self.cfg["blur"]
# 高斯去噪
if blur > 0:
    img = cv2.GaussianBlur(img, (blur, blur), 0)
oldimg = img
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
kernel = np.ones((20, 20), np.uint8)
img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)  # 开运算
img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0);  # 与上一次开运算结果融合
# cv2.imshow('img_opening', img_opening)

# 找到图像边缘
ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)  # 二值化
img_edge = cv2.Canny(img_thresh, 100, 200)
# cv2.imshow('img_edge', img_edge)

# 使用开运算和闭运算让图像边缘成为一个整体
kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)
img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)  # 闭运算
img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)  # 开运算
# cv2.imshow('img_edge2', img_edge2)
# cv2.imwrite('./edge2.png', img_edge2)
# 查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中
image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = [cnt for cnt in contours if cv2.contourArea(cnt) > self.Min_Area]
# 逐个排除不是车牌的矩形区域
car_contours = []
for cnt in contours:
    # 框选 生成最小外接矩形 返回值(中心(x,y), (宽,高), 旋转角度)
    rect = cv2.minAreaRect(cnt)
    # print('宽高:',rect[1])
    area_width, area_height = rect[1]
    # 选择宽大于高的区域
    if area_width < area_height:
        area_width, area_height = area_height, area_width
    wh_ratio = area_width / area_height
    # print('宽高比:',wh_ratio)
    # 要求矩形区域长宽比在2到5.5之间,2到5.5是车牌的长宽比,其余的矩形排除
    if wh_ratio > 2 and wh_ratio < 5.5:
        car_contours.append(rect)
        box = cv2.boxPoints(rect)
        box = np.int0(box)
# 矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位
card_imgs = []
for rect in car_contours:
    if rect[2] > -1 and rect[2] < 1:  # 创造角度,使得左、高、右、低拿到正确的值
        angle = 1
    else:
        angle = rect[2]
    rect = (rect[0], (rect[1][0] + 5, rect[1][1] + 5), angle)  # 扩大范围,避免车牌边缘被排除
    box = cv2.boxPoints(rect)
    heigth_point = right_point = [0, 0]
    left_point = low_point = [pic_width, pic_hight]
    for point in box:
        if left_point[0] > point[0]:
            left_point = point
        if low_point[1] > point[1]:
            low_point = point
        if heigth_point[1] < point[1]:
            heigth_point = point
        if right_point[0] < point[0]:
            right_point = point
    if left_point[1] <= right_point[1]:  # 正角度
        new_right_point = [right_point[0], heigth_point[1]]
        pts2 = np.float32([left_point, heigth_point, new_right_point])  # 字符只是高度需要改变
        pts1 = np.float32([left_point, heigth_point, right_point])
        M = cv2.getAffineTransform(pts1, pts2)
        dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
        self.__point_limit(new_right_point)
        self.__point_limit(heigth_point)
        self.__point_limit(left_point)
        card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
        card_imgs.append(card_img)

    elif left_point[1] > right_point[1]:  # 负角度

        new_left_point = [left_point[0], heigth_point[1]]
        pts2 = np.float32([new_left_point, heigth_point, right_point])  # 字符只是高度需要改变
        pts1 = np.float32([left_point, heigth_point, right_point])
        M = cv2.getAffineTransform(pts1, pts2)
        dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
        self.__point_limit(right_point)
        self.__point_limit(heigth_point)
        self.__point_limit(new_left_point)
        card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
        card_imgs.append(card_img)
#使用颜色定位,排除不是车牌的矩形,目前只识别蓝、绿、黄车牌
colors = []
for card_index, card_img in enumerate(card_imgs):
    green = yellow = blue = black = white = 0
    try:
        # 有转换失败的可能,原因来自于上面矫正矩形出错
        card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
    except:
        print('BGR转HSV失败')
        card_imgs = colors = None
        return card_imgs, colors

    if card_img_hsv is None:
        continue
    row_num, col_num = card_img_hsv.shape[:2]
    card_img_count = row_num * col_num

    # 确定车牌颜色
    for i in range(row_num):
        for j in range(col_num):
            H = card_img_hsv.item(i, j, 0)
            S = card_img_hsv.item(i, j, 1)
            V = card_img_hsv.item(i, j, 2)
            if 11 < H <= 34 and S > 34:  # 图片分辨率调整
                yellow += 1
            elif 35 < H <= 99 and S > 34:  # 图片分辨率调整
                green += 1
            elif 99 < H <= 124 and S > 34:  # 图片分辨率调整
                blue += 1

            if 0 < H < 180 and 0 < S < 255 and 0 < V < 46:
                black += 1
            elif 0 < H < 180 and 0 < S < 43 and 221 < V < 225:
                white += 1
    color = "no"
    # print('黄:{:<6}绿:{:<6}蓝:{:<6}'.format(yellow,green,blue))

    limit1 = limit2 = 0
    if yellow * 2 >= card_img_count:
        color = "yellow"
        limit1 = 11
        limit2 = 34  # 有的图片有色偏偏绿
    elif green * 2 >= card_img_count:
        color = "green"
        limit1 = 35
        limit2 = 99
    elif blue * 2 >= card_img_count:
        color = "blue"
        limit1 = 100
        limit2 = 124  # 有的图片有色偏偏紫
    elif black + white >= card_img_count * 0.7:
        color = "bw"
    # print(color)
    colors.append(color)
    # print(blue, green, yellow, black, white, card_img_count)
    if limit1 == 0:
        continue

    # 根据车牌颜色再定位,缩小边缘非车牌边界
    xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
    if yl == yh and xl == xr:
        continue
    need_accurate = False
    if yl >= yh:
        yl = 0
        yh = row_num
        need_accurate = True
    if xl >= xr:
        xl = 0
        xr = col_num
        need_accurate = True
    card_imgs[card_index] = card_img[yl:yh, xl:xr] \
        if color != "green" or yl < (yh - yl) // 4 else card_img[yl - (yh - yl) // 4:yh, xl:xr]
    if need_accurate:  # 可能x或y方向未缩小,需要再试一次
        card_img = card_imgs[card_index]
        card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
        xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
        if yl == yh and xl == xr:
            continue
        if yl >= yh:
            yl = 0
            yh = row_num
        if xl >= xr:
            xl = 0
            xr = col_num
    card_imgs[card_index] = card_img[yl:yh, xl:xr] \
        if color != "green" or yl < (yh - yl) // 4 else card_img[yl - (yh - yl) // 4:yh, xl:xr]
# cv2.imshow("result", card_imgs[0])
# cv2.imwrite('1.jpg', card_imgs[0])
# print('颜色识别结果:' + colors[0])
return card_imgs, colors

至此我们就可以输出车牌ROI区域和车牌颜色了,效果如下:

车牌自动识别:

本篇介绍调用百度AI提供的车牌识别接口 – 百度AI开放平台链接,识别效果非常不错

这里面我们可以创建一个车牌识别的应用,其中的API Key及Secret Key后面我们调用车牌识别检测接口时会用到。

我们可以看到官方提供的帮助文档,介绍了如何调用请求URL数据格式,向API服务地址使用POST发送请求,必须在URL中带上参数access_token,可通过后台的API Key和Secret Key生成。这里面的API Key和Secret Key就是我们上面提到的。

接下来我们看看调用车牌识别接口代码示例。

那我们如何获取识别的车牌号码呢?API文档可以看到里面有个words_result字典 ,其中的color代表车牌颜色 ,number代表车牌号码 。这样我就可以知道识别的车牌颜色和车牌号了。

车牌识别的接口调用流程基本已经清楚了,下面就可以进行代码实现了。

def get_token(self):

host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=' + self.client_id + '&client_secret=' + self.client_secret
response = requests.get(host)
if response:
    token_info = response.json()
    token_key = token_info['access_token']
return token_key

def get_license_plate(self, car_pic):

result = {}
card_imgs, colors = self.pretreatment(car_pic)
request_url = "https://aip.baidubce.com/rest/2.0/ocr/v1/license_plate"
# 二进制方式打开图片文件
f = open(car_pic, 'rb')
img = base64.b64encode(f.read())
params = {"image": img}
access_token = self.get_token()
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
if response:
    print(response.json())
    license_result = response.json()['words_result']['number']
    card_color = response.json()['words_result']['color']
    if license_result != []:
        result['InputTime'] = time.strftime("%Y-%m-%d %H:%M:%S")
        result['Type'] = self.cardtype[card_color]
        result['Picture'] = card_imgs[0]
        result['Number'] = ''.join(license_result[:2]) + '·' + ''.join(license_result[2:])
        try:
            result['From'] = ''.join(self.Prefecture[license_result[0]][license_result[1]])
        except:
            result['From'] = '未知'
        return result
else:
    return None

这样我们就可以拿到车牌颜色和车牌号码了,效果如下:

  1. 车牌信息显示存储

3.1 车牌信息显示:

def __show(self, result, FileName):

# 显示表格
self.RowLength = self.RowLength + 1
if self.RowLength > 18:
    self.tableWidget.setColumnWidth(5, 157)
self.tableWidget.setRowCount(self.RowLength)
self.tableWidget.setItem(self.RowLength - 1, 0, QTableWidgetItem(FileName))
self.tableWidget.setItem(self.RowLength - 1, 1, QTableWidgetItem(result['InputTime']))
self.tableWidget.setItem(self.RowLength - 1, 2, QTableWidgetItem(result['Number']))
self.tableWidget.setItem(self.RowLength - 1, 3, QTableWidgetItem(result['Type']))
if result['Type'] == '蓝色牌照':
    self.tableWidget.item(self.RowLength - 1, 3).setBackground(QBrush(QColor(3, 128, 255)))
elif result['Type'] == '绿色牌照':
    self.tableWidget.item(self.RowLength - 1, 3).setBackground(QBrush(QColor(98, 198, 148)))
elif result['Type'] == '黄色牌照':
    self.tableWidget.item(self.RowLength - 1, 3).setBackground(QBrush(QColor(242, 202, 9)))
self.tableWidget.setItem(self.RowLength - 1, 4, QTableWidgetItem(result['From']))
self.tableWidget.item(self.RowLength - 1, 4).setBackground(QBrush(QColor(255, 255, 255)))
# 显示识别到的车牌位置
size = (int(self.label_3.width()), int(self.label_3.height()))
shrink = cv2.resize(result['Picture'], size, interpolation=cv2.INTER_AREA)
shrink = cv2.cvtColor(shrink, cv2.COLOR_BGR2RGB)
self.QtImg = QtGui.QImage(shrink[:], shrink.shape[1], shrink.shape[0], shrink.shape[1] * 3,
                          QtGui.QImage.Format_RGB888)
self.label_3.setPixmap(QtGui.QPixmap.fromImage(self.QtImg))

效果如下:

3.2 信息导出存储:

def __writexls(self, DATA, path):

wb = xlwt.Workbook();
ws = wb.add_sheet('Data');
# DATA.insert(0, ['文件名称','录入时间', '车牌号码', '车牌类型', '车牌信息'])
for i, Data in enumerate(DATA):
    for j, data in enumerate(Data):
        ws.write(i, j, data)
wb.save(path)
QMessageBox.information(None, "成功", "数据已保存!", QMessageBox.Yes)

def __writecsv(self, DATA, path):

f = open(path, 'w')
# DATA.insert(0, ['文件名称','录入时间', '车牌号码', '车牌类型', '车牌信息'])
for data in DATA:
    f.write((',').join(data) + '\n')
f.close()
QMessageBox.information(None, "成功", "数据已保存!", QMessageBox.Yes)

def __writeFiles(self):

path, filetype = QFileDialog.getSaveFileName(None, "另存为", self.ProjectPath,
                                             "Excel 工作簿(*.xls);;CSV (逗号分隔)(*.csv)")
if path == "":  # 未选择
    return
if filetype == 'Excel 工作簿(*.xls)':
    self.__writexls(self.Data, path)
elif filetype == 'CSV (逗号分隔)(*.csv)':
    self.__writecsv(self.Data, path)

效果如下:

导出车牌信息数据如下

至此,整个车牌自动识别系统就完成了~

目录
相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
67 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
286 55
|
16天前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
81 4
|
24天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
117 66
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
189 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
10天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
|
14天前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
25 3
|
26天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
50 5
|
1月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
52 4
基于Python深度学习的果蔬识别系统实现