【笔记】SQL调优指南—SQL调优进阶—查询优化器介绍

简介: 查询优化器通过优化逻辑计划从而输出物理计划,其主要阶段包含查询改写和计划枚举。本文将会介绍查询优化器的基本原理包含关系代数算子、查询改写(RBO阶段)、查询计划枚举(CBO阶段)。

PolarDB-X接收到一条SQL后的执行过程大致如下:333.png

  • 语法解析器(Parser)将SQL文本解析成抽象语法树(AST)。
  • 语法树被转化成基于关系代数的逻辑计划。
  • 优化器(Optimizer)对逻辑计划进行优化得到物理计划。
  • 执行器(Executor)执行该计划,得到查询结果并返回给客户端。

关系代数算子444.png一条SQL查询在数据库系统中通常被表示为一棵关系代数算子组成的树,有如下场景的算子:

  • Project:用于描述SQL中的SELECT列,包括函数计算。Agg:用于描述SQL中的Group By及聚合函数,其对应的物理算子有HashAgg、SortAgg。Sort:用于描述SQL中的Order By及Limit,其对应的物理算子有TopN、MemSort。
  • Filter:用于描述SQL中的WHERE条件。
  • JOIN:用于描述SQL中的JOIN,其对应的物理算子有HashJoin、 BKAJoin、Nested-Loop Join、SortMergeJoin等。
  • Agg:用于描述SQL中的Group By及聚合函数,其对应的物理算子有HashAgg、SortAgg。
  • Sort:用于描述SQL中的Order By及Limit,其对应的物理算子有TopN、MemSort。
  • 等等

例如,对于如下查询SQL


SELECT l_orderkey, sum(l_extendedprice *(1 - l_discount)) AS revenue
FROM CUSTOMER, ORDERS, LINEITEM
WHERE c_mktsegment = 'AUTOMOBILE'
  and c_custkey = o_custkey
  and l_orderkey = o_orderkey
  and o_orderdate < '1995-03-13'
  and l_shipdate > '1995-03-13'
GROUP BY l_orderkey;

通过如下EXPLAIN命令看到PolarDB-X的执行计划:


HashAgg(group="l_orderkey", revenue="SUM(*)")

HashJoin(condition="o_custkey = c_custkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="ORDERS_[0-7],LINEITEM_[0-7]", shardCount=8, sql="SELECT `ORDERS`.`o_custkey`, `LINEITEM`.`l_orderkey`, (`LINEITEM`.`l_extendedprice` * (? - `LINEITEM`.`l_discount`)) AS `x` FROM `ORDERS` AS `ORDERS` INNER JOIN `LINEITEM` AS `LINEITEM` ON (((`ORDERS`.`o_orderkey` = `LINEITEM`.`l_orderkey`) AND (`ORDERS`.`o_orderdate` < ?)) AND (`LINEITEM`.`l_shipdate` > ?))")
Gather(concurrent=true)
LogicalView(tables="CUSTOMER_[0-7]", shardCount=8, sql="SELECT `c_custkey` FROM `CUSTOMER` AS `CUSTOMER` WHERE (`c_mktsegment` = ?)")

用树状图表示如下:555.png

查询改写(RBO)

查询改写(SQL Rewrite)阶段输入为逻辑执行计划,输出为逻辑执行计划。这一步主要应用一些启发式规则,是基于规则的优化器(Rule-Based Optimizer,简称RBO),所以也常被称为RBO阶段。

查询改写这一步的主要有如下功能:

  • 子查询去关联化(Subquery Unnesting)子查询去关联化是将含有关联项的子查询(关联子查询)表示为SemiJoin或类似的算子,便于后续的各种优化,例如下推到存储层MySQL或在PolarDB-X层选择某种算法执行。在如下例子中IN子查询转化为SemiJoin算子,并最终转化成SemiHashJoin物理算子由PolarDB-X进行执行:
> explain  select id from t1 where id in (select id from t2 where t2.name = 'hello');
SemiHashJoin(condition="id = id", type="semi")
Gather(concurrent=true)
LogicalView(tables="t1", shardCount=2, sql="SELECT `id` FROM `t1` AS `t1`")
Gather(concurrent=true)
LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id` FROM `t2` AS `t2` WHERE (`name` = ?)")
  • 算子下推算子下推是非常关键的一步,PolarDB-X内置了如下算子的下推优化规则:
优化规则 描述
谓词下推或列裁剪 将Filter及Project算子下推至存储层MySQL执行,过滤掉不需要的行和列。
JOIN Clustering 将JOIN按照拆分方式及拆分键的等值条件进行重排和聚簇,方便下一步的JOIN下推。
JOIN下推 对于符合条件的JOIN,将其下推至存储层MySQL执行。
Agg下推 将聚合(Agg)拆分为FinalAgg和LocalAgg两个阶段,并将LocalAgg下推至存储层MySQL。
Sort下推 将排序(Sort)拆分为MergeSort和LocalSort两个阶段,并将LocalSort下推至存储层MySQL。

查询计划枚举(CBO)

查询改写阶段输出的逻辑执行计划会被输入到查询计划枚举(Plan Enumerator)中,并输出一个最终的物理执行计划。查询计划枚举在多个可行的查询计划中,根据预先定义的代价模型,选择出代价最低的一个。与查询改写阶段不同,在查询计划枚举中,规则可能产生更好的执行计划,也可能产生更差的执行计划,可以根据算子经过规则优化后的前后代价对比选出较优的那个,因此这也被称为基于代价的优化(Cost-based Optimizer,简称CBO)。

其核心组件有以下几个部分:

  • 统计信息(Statistics)
  • 基数估计(Cardinality Estimation)
  • 转化规则(Transform Rules)
  • 代价模型(Cost Model)
  • 计划空间搜索引擎(Plan Space Search Engine)

逻辑上,CBO的过程包括如下几个步骤:

  1. 搜索引擎利用转化规则,对输入的逻辑执行计划进行变换,构造出物理执行计划的搜索空间。
  2. 利用代价模型对搜索空间中的每一个执行计划进行代价估计,选出代价最低的物理执行计划。
  3. 代价估计的过程离不开基数估计,它利用各个表、列的统计信息,估算出各算子的输入行数、选择率等信息,提供给算子的代价模型,从而估算出查询计划的代价。
相关文章
|
前端开发 Java 关系型数据库
基于Springboot开发的家庭财务管理系统
基于Springboot开发的家庭财务管理系统
520 1
基于Springboot开发的家庭财务管理系统
|
7天前
|
数据采集 人工智能 安全
|
17天前
|
云安全 监控 安全
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
285 164
|
2天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
291 155
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
219 113
|
10天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
763 5