【笔记】用户指南—诊断与优化—SQL审计与分析—日志报表

简介: PolarDB-X 支持SQL审计与分析功能,依托日志服务,提供了运营中心、性能中心、安全中心等开箱即用的报表,方便您快速查看了解PolarDB-X数据库的执行状况、性能指标、潜在安全问题等情况。

前提条件

开启SQL审计与分析功能。


注意事项

由于相同地区的PolarDB-X数据库的审计日志均写入日志服务同一个Logstore中,查看当前PolarDB-X实例下的报表数据时,默认为您添加基于topic:polardbx_sqlaudit and instance_id:xxxxxxxxx的过滤条件,表示查看当前实例下的所有数据库的日志数据。

操作步骤

  1. 登录云原生分布式数据库控制台
  2. 在页面左上角选择目标实例所在地域。
  3. 实例列表页,单击PolarDB-X 2.0页签。
    说明 目前PolarDB-X 2.0实例仅支持华北2(北京)、华东1(杭州)、华北1(青岛)、华东2(上海)、华南1(深圳)、德国(法兰克福)和美国(硅谷)地域。
  4. 找到目标实例,单击实例ID。
  5. 在左侧导航栏,单击诊断与优化 > SQL审计与分析
  6. SQL审计与分析页面,单击日志报表页签,您可以通过单击不同页签查看运营中心性能中心安全中心的详情。
    • 运营中心:展示了目标PolarDB-X 2.0实例下所有数据库的SQL执行指标、分布、趋势等信息。3.png
分类 图表 类型 默认时间范围 描述
基本指标 PV(SQL执行) 单值 1小时(相对) SQL执行的次数。
UV(独立IP用户) 单值 1小时(相对) 独立的用户及IP数量。
危险IP数 单值 1小时(相对) 危险IP的数量。

说明 更多关于危险IP的详情,请参见安全检测函数

执行错误 单值 1小时(相对) 执行错误的SQL数量。
操作表格数 单值 1小时(相对) SQL操作的表格总数。
操作指标 累计插入行数 单值 1小时(相对) 插入操作累计插入的数据行数。
累计更新行数 单值 1小时(相对) 更新操作累计更新的数据行数。
累计删除行数 单值 1小时(相对) 删除操作累计删除的数据行数。
累计查询行数 单值 1小时(相对) 查询操作累计返回的数据行数。
非表格操作种类 单值 1小时(相对) 非表格操作的SQL种类,例如 show variables like
趋势 SQL执行趋势 柱状图 1小时(相对) SQL执行的趋势分布以及对应的错误SQL的分布趋势。
操作表格 流图 1小时(相对) SQL操作表格的分布情况。
SQL类型 流图 1小时(相对) SQL类型的按照时间的分布情况。
分布 操作用户分布 饼图 1小时(相对) 执行SQL用户的分布情况。
SQL执行类型分布 饼图 1小时(相对) 当前时间范围内SQL类型的比例。
操作最多的表格Top 50 表格 1小时(相对) 操作最多的表格列表,包括表格的名称以及对应的读、删、改、插的次数。
执行分布(世界) 地图 1小时(相对) 执行SQL的客户端IP在世界地图上的分布情况。
执行分布(中国) 地图 1小时(相对) 执行SQL的客户端IP在中国地图上的分布情况。
  • 性能中心:展示了目标PolarDB-X实例下所有数据库的具体性能指标,例如SQL执行峰值、SQL执行的平均时间、慢SQL(即执行时间超过1s的SQL)的具体分布与来源等。4.png
分类 图表 类型 默认时间范围 描述
基本指标 SQL 执行峰值 单值 1小时(相对) 每秒SQL执行条数的峰值。
查询带宽峰值 单值 1小时(相对) 每秒查询SQL返回行数的峰值。
插入带宽峰值 单值 1小时(相对) 每秒插入SQL插入的行数峰值。
更新带宽峰值 单值 1小时(相对) 每秒更新SQL更新的行数峰值。
删除带宽峰值 单值 1小时(相对) 每秒删除SQL删除的行数峰值。
执行平均时间 平均时间 单值 1小时(相对) SQL平均的执行时间。
查询SQL 单值 1小时(相对) 平均每秒查询SQL执行的条数。
插入SQL 单值 1小时(相对) 平均每秒插入SQL执行的条数。
更新 SQL 单值 1小时(相对) 平均每秒更新SQL执行的条数。
删除 SQL 单值 1小时(相对) 平均每秒删除SQL执行的条数。
执行分布 查询更新带宽趋势 折线图 1小时(相对) 查询SQL、更新SQL操作行数随时间的分布情况。
SQL执行时间分布 饼图 1小时(相对) SQL执行时间的分布情况。
慢SQL分布 慢SQL表格分布 饼图 1小时(相对) 慢SQL的表格分布情况。
慢SQL用户分布 饼图 1小时(相对) 慢SQL的用户分布情况。
慢SQL类型分布 饼图 1小时(相对) 慢SQL的类型分布情况
慢SQL列表Top 50 表格 1小时(相对) 慢SQL的列表,包括:
  • SQL开始执行的时间点
  • 客户端(IP、城市、网络)
  • SQL执行时间
  • PolarDB-X 2.0实例ID
  • 数据库
  • 表格
  • 用户
  • 影响行数
  • SQL类型
  • 具体SQL语句
高代价 SQL模板 SQL模板执行时间Top 20 表格 1小时(相对) 按照高代价SQL模板统计该模板 SQL的执行情况,包括:
  • SQL模板ID
  • 总体耗时比例
  • 执行次数
  • 平均执行时间(毫秒)
  • 平均影响行数
  • 样例SQL
事务SQL 事务执行影响行数Top 20 表格 1小时(相对) 事务影响行数的Top 20列表,包括:
  • 事务ID
  • 影响行数
事务执行时间Top 20 表格 1小时(相对) 事务执行时间的Top 20列表,包括:
  • 事务ID
  • 执行时间(毫秒)
  • 安全中心:展示了目标PolarDB-X实例下所有数据库的失败SQL和危险SQL(DROP或RUNCATE类型的SQL),以及大批量(影响行数超过100行)删除或修改事件的详情、分布和趋势等。5.png
分类 图表 类型 默认时间范围 描述
安全指标 错误数 单值 1小时(相对) 失败SQL的执行次数。
大批量删除事件 单值 1小时(相对) 大批量删除事件的 SQL数量。
大批量修改事件 单值 1小时(相对) 大批量修改事件的SQL数量。
危险SQL执行 单值 1小时(相对) 危险SQL的数量。
危险IP数 单值 1小时(相对) 危险IP的数量。

说明 更多关于危险IP的详情,请参见安全检测函数

错误分布 错误操作类型分布 面积图 1小时(相对) 失败SQL的类型分布。
出错客户端外网分布 地图 1小时(相对) 失败SQL的客户端在中国地图上的分布。
错误最多的客户端 表格 1小时(相对) 失败SQL的客户端列表,包括:
  • 客户端(IP、城市、网络)
  • 错误次数
  • 主要错误(查询、插入有、更新、删除、其它)
  • 出错样例
危险SQL情况 危险SQL 执行列表 表格 1小时(相对) 危险SQL的列表,包括:
  • SQL开始执行的时间点
  • 客户端(IP、城市、网络)
  • SQL
  • PolarDB-X实例ID
  • 数据库
  • 表格
  • 用户
大批量事务 大批量删除事件Top 50 表格 1小时(相对) 大批量删除SQL的列表,包括:
  • 最早执行时间
  • 最近执行时间
  • PolarDB-X实例ID
  • 数据库
  • 表格
  • 执行次数
  • 平均删除行数
  • 平均时长(秒)
  • SQL
大批量修改事件Top 50 表格 1小时(相对) 大批量修改 SQL 的列表,包括:
  • 最早执行时间
  • 最近执行时间
  • PolarDB-X实例ID
  • 数据库
  • 表格
  • 执行次数
  • 平均更新行数
  • 平均时长(秒)
  • SQL

修改数据统计时间

日志报表页面的所有图表都是基于不同时间段(默认为过去1小时内的)的数据统计结果,您可以根据业务需求修改目标页签下的所有图表或单一图表的数据统计时间范围。

  • 修改目标页签下所有图表的数据统计时间在目标页签右上角,单击请选择,在弹出的页面中修改当前页面所有图表的数据统计时间。
    6.png
  • 修改目标页签下单一图表的数据统计时间

将鼠标放置在目标图表右侧的图标后,单击选择时间范围,在弹出的页面中修改当前图表的数据统计时间。7.png

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
7天前
|
数据采集 人工智能 安全
|
17天前
|
云安全 监控 安全
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
285 164
|
2天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
291 155
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
219 113
|
10天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
763 5