Apache Doris 整合 FLINK CDC + Iceberg 构建实时湖仓一体的联邦查询

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
实时计算 Flink 版,5000CU*H 3个月
简介: 这篇教程将展示如何使用 Flink CDC + Iceberg + Doris 构建实时湖仓一体的联邦查询分析,Doris 1.1版本提供了Iceberg的支持,本文主要展示Doris和Iceberg怎么使用,同时本教程整个环境是都基于伪分布式环境搭建,大家按照步骤可以一步步完成。完整体验整个搭建操作的过程。

1.概览

这篇教程将展示如何使用 Flink CDC + Iceberg + Doris 构建实时湖仓一体的联邦查询分析,Doris 1.1版本提供了Iceberg的支持,本文主要展示Doris和Iceberg怎么使用,同时本教程整个环境是都基于伪分布式环境搭建,大家按照步骤可以一步步完成。完整体验整个搭建操作的过程。

1.1 软件环境

本教程的演示环境如下:

  1. Centos7
  2. Apahce doris 1.1
  3. Hadoop 3.3.3
  4. hive 3.1.3
  5. Fink 1.14.4
  6. flink-sql-connector-mysql-cdc-2.2.1
  7. Apache Iceber 0.13.2
  8. JDK 1.8.0_311
  9. MySQL 8.0.29
wget https://archive.apache.org/dist/hadoop/core/hadoop-3.3.3/hadoop-3.3.3.tar.gz
wget https://archive.apache.org/dist/hive/hive-3.1.3/apache-hive-3.1.3-bin.tar.gz
wget https://dlcdn.apache.org/flink/flink-1.14.4/flink-1.14.4-bin-scala_2.12.tgz
wget https://search.maven.org/remotecontent?filepath=org/apache/iceberg/iceberg-flink-runtime-1.14/0.13.2/iceberg-flink-runtime-1.14-0.13.2.jar
wget https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/flink/flink-shaded-hadoop-3-uber/3.1.1.7.2.9.0-173-9.0/flink-shaded-hadoop-3-uber-3.1.1.7.2.9.0-173-9.0.jar

1.2 系统架构

我们整理架构图如下

  1. 首先我们从Mysql数据中使用Flink 通过 Binlog完成数据的实时采集
  2. 然后再Flink 中创建 Iceberg 表,Iceberg的元数据保存在hive里
  3. 最后我们在Doris中创建Iceberg外表
  4. 在通过Doris 统一查询入口完成对Iceberg里的数据进行查询分析,供前端应用调用,这里iceberg外表的数据可以和Doris内部数据或者Doris其他外部数据源的数据进行关联查询分析

Doris湖仓一体的联邦查询架构如下:

  1. Doris 通过 ODBC 方式支持:MySQL,Postgresql,Oracle ,SQLServer
  2. 同时支持 Elasticsearch 外表
  3. 1.0版本支持Hive外表
  4. 1.1版本支持Iceberg外表
  5. 1.2版本支持Hudi 外表

2.环境安装部署

2.1 安装Hadoop、Hive

tar zxvf hadoop-3.3.3.tar.gz
tar zxvf apache-hive-3.1.3-bin.tar.gz

配置系统环境变量

export HADOOP_HOME=/data/hadoop-3.3.3
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_HDFS_HOME=$HADOOP_HOME
export HIVE_HOME=/data/hive-3.1.3
export PATH=$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin:$HIVE_HOME/conf

2.2 配置hdfs

2.2.1 core-site.xml

vi etc/hadoop/core-site.xml

<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://localhost:9000</value>
    </property>
</configuration>

2.2.2 hdfs-site.xml

vi etc/hadoop/hdfs-site.xml

<configuration>
    <property>
      <name>dfs.replication</name>
      <value>1</value>
    </property>
    <property>
      <name>dfs.namenode.name.dir</name>
      <value>/data/hdfs/namenode</value>
    </property>
    <property>
      <name>dfs.datanode.data.dir</name>
      <value>/data/hdfs/datanode</value>
    </property>
  </configuration>

2.2.3 修改Hadoop启动脚本

sbin/start-dfs.sh

sbin/stop-dfs.sh

在文件开始加上下面的内容

HDFS_DATANODE_USER=root
HADOOP_SECURE_DN_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root

sbin/start-yarn.sh

sbin/stop-yarn.sh

在文件开始加上下面的内容

YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root

2.3 配置yarn

这里我改变了Yarn的一些端口,因为我是单机环境和Doris 的一些端口冲突。你可以不启动yarn

vi etc/hadoop/yarn-site.xml

<property>        
    <name>yarn.resourcemanager.address</name>  
    <value>jiafeng-test:50056</value> 
</property>  
<property>  
    <name>yarn.resourcemanager.scheduler.address</name> 
    <value>jiafeng-test:50057</value> 
</property> 
<property> 
    <name>yarn.resourcemanager.resource-tracker.address</name>  
    <value>jiafeng-test:50058</value> 
</property> 
<property>
    <name>yarn.resourcemanager.admin.address</name> 
    <value>jiafeng-test:50059</value> 
</property> 
<property>
    <name>yarn.resourcemanager.webapp.address</name> 
    <value>jiafeng-test:9090</value> 
</property> 
<property> 
    <name>yarn.nodemanager.localizer.address</name>
    <value>0.0.0.0:50060</value> 
</property> 
<property> 
    <name>yarn.nodemanager.webapp.address</name> 
    <value>0.0.0.0:50062</value>  
</property>


vi etc/hadoop/mapred-site.xm

<property>       
    <name>mapreduce.jobhistory.address</name>  
    <value>0.0.0.0:10020</value>  
</property> 
<property> 
    <name>mapreduce.jobhistory.webapp.address</name> 
    <value>0.0.0.0:19888</value> 
</property> 
<property> 
    <name>mapreduce.shuffle.port</name>
    <value>50061</value> 
</property>

2.2.4 启动hadoop

sbin/start-all.sh


2.4 配置Hive

2.4.1 创建hdfs目录

hdfs dfs -mkdir -p /user/hive/warehouse
hdfs dfs -mkdir /tmp
hdfs dfs -chmod g+w /user/hive/warehouse
hdfs dfs -chmod g+w /tmp

2.4.2 配置hive-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
        <property>
            <name>javax.jdo.option.ConnectionURL</name>
            <value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true</value>
        </property>
        <property>
            <name>javax.jdo.option.ConnectionDriverName</name>
            <value>com.mysql.jdbc.Driver</value>
        </property>
        <property>
            <name>javax.jdo.option.ConnectionUserName</name>
            <value>root</value>
        </property>
        <property>
            <name>javax.jdo.option.ConnectionPassword</name>
            <value>MyNewPass4!</value>
        </property>
        <property>
                <name>hive.metastore.warehouse.dir</name>
                <value>/user/hive/warehouse</value>
                <description>location of default database for the warehouse</description>
        </property>
        <property>
                <name>hive.metastore.uris</name>
                <value/>
                <description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description>
        </property>
        <property>
                <name>javax.jdo.PersistenceManagerFactoryClass</name>
                <value>org.datanucleus.api.jdo.JDOPersistenceManagerFactory</value>
        </property>
        <property>
                <name>hive.metastore.schema.verification</name>
                <value>false</value>
        </property>
        <property>
                <name>datanucleus.schema.autoCreateAll</name>
                <value>true</value>
        </property>
</configuration>

2.4.3 配置 hive-env.sh

加入一下内容

HADOOP_HOME=/data/hadoop-3.3.3

2.4.4 hive元数据初始化

schematool -initSchema -dbType mysql


2.4.5 启动hive metaservice

后台运行

nohup bin/hive --service metaservice 1>/dev/null 2>&1 &

验证

lsof -i:9083
COMMAND   PID USER   FD   TYPE   DEVICE SIZE/OFF NODE NAME
java    20700 root  567u  IPv6 54605348      0t0  TCP *:emc-pp-mgmtsvc (LISTEN)

2.5 安装MySQL

具体请参照这里:

使用 Flink CDC 实现 MySQL 数据实时入 Apache Doris

2.5.1 创建MySQL数据库表并初始化数据


CREATE DATABASE demo;
USE demo;
CREATE TABLE userinfo (
  id int NOT NULL AUTO_INCREMENT,
  name VARCHAR(255) NOT NULL DEFAULT 'flink',
  address VARCHAR(1024),
  phone_number VARCHAR(512),
  email VARCHAR(255),
  PRIMARY KEY (`id`)
)ENGINE=InnoDB ;
INSERT INTO userinfo VALUES (10001,'user_110','Shanghai','13347420870', NULL);
INSERT INTO userinfo VALUES (10002,'user_111','xian','13347420870', NULL);
INSERT INTO userinfo VALUES (10003,'user_112','beijing','13347420870', NULL);
INSERT INTO userinfo VALUES (10004,'user_113','shenzheng','13347420870', NULL);
INSERT INTO userinfo VALUES (10005,'user_114','hangzhou','13347420870', NULL);
INSERT INTO userinfo VALUES (10006,'user_115','guizhou','13347420870', NULL);
INSERT INTO userinfo VALUES (10007,'user_116','chengdu','13347420870', NULL);
INSERT INTO userinfo VALUES (10008,'user_117','guangzhou','13347420870', NULL);
INSERT INTO userinfo VALUES (10009,'user_118','xian','13347420870', NULL);

2.6 安装 Flink

tar zxvf flink-1.14.4-bin-scala_2.12.tgz

然后需要将下面的依赖拷贝到Flink安装目录下的lib目录下,具体的依赖的lib文件如下:

下面将几个Hadoop和Flink里没有的依赖下载地址放在下面

wget https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/2.2.1/flink-sql-connector-mysql-cdc-2.2.1.jar
wget https://repo1.maven.org/maven2/org/apache/thrift/libfb303/0.9.3/libfb303-0.9.3.jar
wget https://search.maven.org/remotecontent?filepath=org/apache/iceberg/iceberg-flink-runtime-1.14/0.13.2/iceberg-flink-runtime-1.14-0.13.2.jar
wget https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/flink/flink-shaded-hadoop-3-uber/3.1.1.7.2.9.0-173-9.0/flink-shaded-hadoop-3-uber-3.1.1.7.2.9.0-173-9.0.jar

其他的:

hadoop-3.3.3/share/hadoop/common/lib/commons-configuration2-2.1.1.jar
hadoop-3.3.3/share/hadoop/common/lib/commons-logging-1.1.3.jar
hadoop-3.3.3/share/hadoop/tools/lib/hadoop-archive-logs-3.3.3.jar
hadoop-3.3.3/share/hadoop/common/lib/hadoop-auth-3.3.3.jar
hadoop-3.3.3/share/hadoop/common/lib/hadoop-annotations-3.3.3.jar
hadoop-3.3.3/share/hadoop/common/hadoop-common-3.3.3.jar
adoop-3.3.3/share/hadoop/hdfs/hadoop-hdfs-3.3.3.jar
hadoop-3.3.3/share/hadoop/client/hadoop-client-api-3.3.3.jar
hive-3.1.3/lib/hive-exec-3.1.3.jar
hive-3.1.3/lib/hive-metastore-3.1.3.jar
hive-3.1.3/lib/hive-hcatalog-core-3.1.3.jar

2.6.1 启动Flink

bin/start-cluster.sh

启动后的界面如下:

2.6.2 进入 Flink SQL Client

bin/sql-client.sh embedded

开启 checkpoint,每隔3秒做一次 checkpoint

Checkpoint 默认是不开启的,我们需要开启 Checkpoint 来让 Iceberg 可以提交事务。 并且,mysql-cdc 在 binlog 读取阶段开始前,需要等待一个完整的 checkpoint 来避免 binlog 记录乱序的情况。

注意:这里是演示环境,checkpoint的间隔设置比较短,线上使用,建议设置为3-5分钟一次checkpoint。
Flink SQL> SET execution.checkpointing.interval = 3s;
[INFO] Session property has been set.

2.6.3 创建Iceberg Catalog

CREATE CATALOG hive_catalog WITH (
  'type'='iceberg',
  'catalog-type'='hive',
  'uri'='thrift://localhost:9083',
  'clients'='5',
  'property-version'='1',
  'warehouse'='hdfs://localhost:8020/user/hive/warehouse'
);

查看catalog

Flink SQL> show catalogs;
+-----------------+
|    catalog name |
+-----------------+
| default_catalog |
|    hive_catalog |
+-----------------+
2 rows in set


2.6.4 创建 Mysql CDC 表

CREATE TABLE user_source (
    database_name STRING METADATA VIRTUAL,
    table_name STRING METADATA VIRTUAL,
    `id` DECIMAL(20, 0) NOT NULL,
    name STRING,
    address STRING,
    phone_number STRING,
    email STRING,
    PRIMARY KEY (`id`) NOT ENFORCED
  ) WITH (
    'connector' = 'mysql-cdc',
    'hostname' = 'localhost',
    'port' = '3306',
    'username' = 'root',
    'password' = 'MyNewPass4!',
    'database-name' = 'demo',
    'table-name' = 'userinfo'
  );

查询CDC表:

select * from user_source;

2.6.5 创建Iceberg表

---查看catalog
show catalogs;
---使用catalog
use catalog hive_catalog;
--创建数据库
CREATE DATABASE iceberg_hive; 
--使用数据库
use iceberg_hive;

2.6.5.1 创建表

CREATE TABLE all_users_info (
    database_name STRING,
    table_name    STRING,
    `id`          DECIMAL(20, 0) NOT NULL,
    name          STRING,
    address       STRING,
    phone_number  STRING,
    email         STRING,
    PRIMARY KEY (database_name, table_name, `id`) NOT ENFORCED
  ) WITH (
    'catalog-type'='hive'
  );

从CDC表里插入数据到Iceberg表里

use catalog default_catalog;
insert into hive_catalog.iceberg_hive.all_users_info select * from user_source;

在web界面可以看到任务的运行情况

然后停掉任务,我们去查询iceberg表

select * from hive_catalog.iceberg_hive.all_users_info

可以看到下面的结果

我们去hdfs上可以看到hive目录下的数据及对应的元数据

我们也可以通过Hive建好Iceberg表,然后通过Flink将数据插入到表里

下载Iceberg Hive运行依赖

wget https://repo1.maven.org/maven2/org/apache/iceberg/iceberg-hive-runtime/0.13.2/iceberg-hive-runtime-0.13.2.jar

在hive shell下执行:

SET engine.hive.enabled=true; 
SET iceberg.engine.hive.enabled=true; 
SET iceberg.mr.catalog=hive; 
 add jar /path/to/iiceberg-hive-runtime-0.13.2.jar;

创建表

CREATE EXTERNAL TABLE iceberg_hive( 
  `id` int, 
  `name` string)
STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler' 
LOCATION 'hdfs://localhost:8020/user/hive/warehouse/iceber_db/iceberg_hive'
TBLPROPERTIES (
  'iceberg.mr.catalog'='hadoop', 
'iceberg.mr.catalog.hadoop.warehouse.location'='hdfs://localhost:8020/user/hive/warehouse/iceber_db/iceberg_hive'
  );

然后再Flink SQL Client下执行下面语句将数据插入到Iceber表里

INSERT INTO hive_catalog.iceberg_hive.iceberg_hive values(2, 'c');
INSERT INTO hive_catalog.iceberg_hive.iceberg_hive values(3, 'zhangfeng');

查询这个表

select * from hive_catalog.iceberg_hive.iceberg_hive

可以看到下面的结果

3. Doris 查询 Iceberg

Apache Doris 提供了 Doris 直接访问 Iceberg 外部表的能力,外部表省去了繁琐的数据导入工作,并借助 Doris 本身的 OLAP 的能力来解决 Iceberg 表的数据分析问题:

  1. 支持 Iceberg 数据源接入Doris
  2. 支持 Doris 与 Iceberg 数据源中的表联合查询,进行更加复杂的分析操作

3.1安装Doris

这里我们不在详细讲解Doris的安装,如果你不知道怎么安装Doris请参照官方文档:快速入门

3.2 创建Iceberg外表

CREATE TABLE `all_users_info` 
ENGINE = ICEBERG
PROPERTIES (
"iceberg.database" = "iceberg_hive",
"iceberg.table" = "all_users_info",
"iceberg.hive.metastore.uris"  =  "thrift://localhost:9083",
"iceberg.catalog.type"  =  "HIVE_CATALOG"
);

参数说明:

  • ENGINE 需要指定为 ICEBERG
  • PROPERTIES 属性:
  • iceberg.hive.metastore.uris:Hive Metastore 服务地址
  • iceberg.database:挂载 Iceberg 对应的数据库名
  • iceberg.table:挂载 Iceberg 对应的表名,挂载 Iceberg database 时无需指定。
  • iceberg.catalog.type:Iceberg 中使用的 catalog 方式,默认为 HIVE_CATALOG,当前仅支持该方式,后续会支持更多的 Iceberg catalog 接入方式。


mysql> CREATE TABLE `all_users_info`
    -> ENGINE = ICEBERG
    -> PROPERTIES (
    -> "iceberg.database" = "iceberg_hive",
    -> "iceberg.table" = "all_users_info",
    -> "iceberg.hive.metastore.uris"  =  "thrift://localhost:9083",
    -> "iceberg.catalog.type"  =  "HIVE_CATALOG"
    -> );
Query OK, 0 rows affected (0.23 sec)
mysql> select * from all_users_info;
+---------------+------------+-------+----------+-----------+--------------+-------+
| database_name | table_name | id    | name     | address   | phone_number | email |
+---------------+------------+-------+----------+-----------+--------------+-------+
| demo          | userinfo   | 10004 | user_113 | shenzheng | 13347420870  | NULL  |
| demo          | userinfo   | 10005 | user_114 | hangzhou  | 13347420870  | NULL  |
| demo          | userinfo   | 10002 | user_111 | xian      | 13347420870  | NULL  |
| demo          | userinfo   | 10003 | user_112 | beijing   | 13347420870  | NULL  |
| demo          | userinfo   | 10001 | user_110 | Shanghai  | 13347420870  | NULL  |
| demo          | userinfo   | 10008 | user_117 | guangzhou | 13347420870  | NULL  |
| demo          | userinfo   | 10009 | user_118 | xian      | 13347420870  | NULL  |
| demo          | userinfo   | 10006 | user_115 | guizhou   | 13347420870  | NULL  |
| demo          | userinfo   | 10007 | user_116 | chengdu   | 13347420870  | NULL  |
+---------------+------------+-------+----------+-----------+--------------+-------+
9 rows in set (0.18 sec)

3.3 同步挂在

当 Iceberg 表 Schema 发生变更时,可以通过 REFRESH 命令手动同步,该命令会将 Doris 中的 Iceberg 外表删除重建。

-- 同步 Iceberg 表
REFRESH TABLE t_iceberg;
-- 同步 Iceberg 数据库
REFRESH DATABASE iceberg_test_db;

3.4 Doris 和 Iceberg 数据类型对应关系

支持的 Iceberg 列类型与 Doris 对应关系如下表:

Iceberg Doris 描述
BOOLEAN BOOLEAN
INTEGER INT
LONG BIGINT
FLOAT FLOAT
DOUBLE DOUBLE
DATE DATE
TIMESTAMP DATETIME Timestamp 转成 Datetime 会损失精度
STRING STRING
UUID VARCHAR 使用 VARCHAR 来代替
DECIMAL DECIMAL
TIME - 不支持
FIXED - 不支持
BINARY - 不支持
STRUCT - 不支持
LIST - 不支持
MAP - 不支持

3.5 注意事项

  • Iceberg 表 Schema 变更不会自动同步,需要在 Doris 中通过 REFRESH 命令同步 Iceberg 外表或数据库。
  • 当前默认支持的 Iceberg 版本为 0.12.0,0.13.x,未在其他版本进行测试。后续后支持更多版本。

3.6 Doris FE 配置

下面几个配置属于 Iceberg 外表系统级别的配置,可以通过修改 fe.conf 来配置,也可以通过 ADMIN SET CONFIG 来配置。

  • iceberg_table_creation_strict_mode
    创建 Iceberg 表默认开启 strict mode。 strict mode 是指对 Iceberg 表的列类型进行严格过滤,如果有 Doris 目前不支持的数据类型,则创建外表失败。
  • iceberg_table_creation_interval_second
    自动创建 Iceberg 表的后台任务执行间隔,默认为 10s。
  • max_iceberg_table_creation_record_size
    Iceberg 表创建记录保留的最大值,默认为 2000. 仅针对创建 Iceberg 数据库记录。

4. 总结

这里Doris On Iceberg我们只演示了Iceberg单表的查询,你还可以联合Doris的表,或者其他的ODBC外表,Hive外表,ES外表等进行联合查询分析,通过Doris对外提供统一的查询分析入口。

自此我们完整从搭建Hadoop,hive、flink 、Mysql、Doris 及Doris On Iceberg的使用全部介绍完了,Doris朝着数据仓库和数据融合的架构演进,支持湖仓一体的联邦查询,给我们的开发带来更多的便利,更高效的开发,省去了很多数据同步的繁琐工作,快快来体验吧。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
3天前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
73 43
|
1天前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
本文整理自阿里云智能集团 Flink PMC Member & Committer 徐榜江(雪尽)在 FFA 2024 分论坛的分享,涵盖四大主题:Flink CDC、YAML API、Transform + AI 和 Community。文章详细介绍了 Flink CDC 的发展历程及其优势,特别是 YAML API 的设计与实现,以及如何通过 Transform 和 AI 模型集成提升数据处理能力。最后,分享了社区动态和未来规划,欢迎更多开发者加入开源社区,共同推动 Flink CDC 的发展。
188 10
Flink CDC YAML:面向数据集成的 API 设计
|
24天前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
175 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
SQL 消息中间件 分布式计算
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(上)
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(上)
288 0
|
数据采集 分布式计算 Kubernetes
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(下)
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(下)
312 0
|
存储 SQL 传感器
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析2
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析2
629 0
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析2
|
SQL 消息中间件 分布式计算
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析1
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析1
365 0
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析1
|
SQL 消息中间件 分布式计算
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析3
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析3
186 0
|
5月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
3月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1652 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎

推荐镜像

更多