开发指南—函数—窗口函数

简介: 传统的Group By函数会按照分组后的查询结果进行聚合计算,且每个分组只输出一条数据。但与传统的Group By函数不同,窗口函数(也称OLAP函数)可以为每个分组返回多个值,且不会影响记录的数量。本文介绍如何使用窗口函数

使用限制

  • 窗口函数仅支持用于SELECT语句中。
  • 窗口函数禁止与单独的聚合函数混合使用。例如,在如下语句中,SUM为聚合函数,且未与OVER关键字组合,因此您无法使用如下语句进行查询:
SELECT SUM(NAME),COUNT() OVER(...) FROM SOME_TABLE
  • 若需实现如上查询,您可以使用如下语句代替:
SELECT SUM(NAME),WIN1 FROM (SELECT NAME,COUNT() OVER(...) AS WIN1 FROM SOME_TABLE) alias

语法


function OVER ([[partition by column_some1] [order by column_some2] [RANGE|ROWS BETWEEN start AND end]])
参数 说明
function 该部分指定了窗口函数中支持的函数,取值范围如下:
  • 可以在窗口函数中结合OVER关键字使用如下聚合函数:
    • SUM()
    • COUNT()
    • AVG()
    • MAX()
    • MIN()
  • 专用窗口函数如下:
    • ROW_NUMBER()
    • RANK()
    • DENSE_RANK()
    • PERCENT_RANK()
    • CUME_DIST()
    • FIRST_VALUE()
    • LAST_VALUE()
    • LAG()
    • LEAD()
    • NTH_VALUE()

说明

  • 当使用专用窗口函数RANK()DENSE_RANK()时,窗口函数中的order by部分不可省略。更多专用窗口函数的介绍,请参见Window Function Descriptions
  • 支持如下专用窗口函数:
    • PERCENT_RANK()
    • CUME_DIST()
    • FIRST_VALUE()
    • LAST_VALUE()
    • LAG()
    • LEAD()
    • NTH_VALUE()
[partition by column_some1] 该部分指定了窗口函数的分区规范,用于将输入行分散到不同的分区中,过程和GROUP BY子句的分散过程相似。

说明 partition by部分不支持引用复杂表达式,如您可以引用column_some1,但不可以引用column_some1 + 1

[order by column_some2] 该部分指定了窗口函数的排序规范,用于确定输入数据行在窗口函数中执行的顺序。

说明 order by部分不支持引用复杂表达式,如您可以引用column_some2,但不可以引用column_some2 + 1

[RANGE|ROWS BETWEEN start AND end] 该部分指定了窗口函数的窗口区间,支持按照计算列值的范围(即RANGE)或计算列的行数(即ROWS)等两种模式来定义区间。

您可以使用BETWEEN start AND end指定边界的可取值,其中:

  • start取值范围如下:
    • CURRENT ROW:当前行
    • N PRECEDING:前N行
    • UNBOUNDED PRECEDING:直到第1行
  • end取值范围如下:
    • CURRENT ROW:当前行
    • N FOLLOWING:后N行
    • UNBOUNDED FOLLOWING:直到最后1行

使用示例

假设已有如下原始数据:


| year | country | product    | profit |

|------|---------|------------|--------|
| 2001 | Finland | Phone | 10 |
| 2000 | Finland | Computer | 1500 |
| 2001 | USA | Calculator | 50 |
| 2001 | USA | Computer | 1500 |
| 2000 | India | Calculator | 75 |
| 2000 | India | Calculator | 75 |
| 2001 | India | Calculator | 79 |
  • 您可以使用如下聚合函数来统计每个国家的总利润:
select
country,
sum(profit) over (partition by country) sum_profit
from test_window;
  • 返回结果如下:
| country | sum_profit |
|---------|------------|
| India | 229 |
| India | 229 |
| India | 229 |
| USA | 1550 |
| USA | 1550 |
| Finland | 1510 |
| Finland | 1510 |
  • 您可以使用如下专用窗口函数将数据按照国家分组,并将国家内的产品按利润由小到大排名:
select
'year',
country,
product,
profit,
rank() over (partition by country order by profit) as rank
from test_window;
  • 返回结果如下:
| year | country | product    | profit | rank |
|------|---------|------------|--------|------|
| 2001 | Finland | Phone | 10 | 1 |
| 2000 | Finland | Computer | 1500 | 2 |
| 2001 | USA | Calculator | 50 | 1 |
| 2001 | USA | Computer | 1500 | 2 |
| 2000 | India | Calculator | 75 | 1 |
| 2000 | India | Calculator | 75 | 1 |
| 2001 | India | Calculator | 79 | 3 |
  • 您可以使用如下带有ROWS命令的语句,查询根据当前窗口的每行数据计算利润部分的总和:
select 
'year',
country,
profit,
sum(profit) over (partition by country order by 'year' ROWS BETWEEN UNBOUNDED PRECEDING and CURRENT ROW) as sum_win
from test_window;
  • 返回结果如下:
+------+---------+--------+-------------+
| year | country | profit | sum_win |
+------+---------+--------+-------------+
| 2001 | USA | 50 | 50 |
| 2001 | USA | 1500 | 1550 |
| 2000 | India | 75 | 75 |
| 2000 | India | 75 | 150 |
| 2001 | India | 79 | 229 |
| 2000 | Finland | 1500 | 1500 |
| 2001 | Finland | 10 | 1510 |
相关文章
|
3月前
|
存储 人工智能 文字识别
PDF解析迎来技术革新!阿里新产品实现复杂文档端到端结构化处理
前言9月24日云栖大会现场,由阿里巴巴爱橙科技数据技术及产品团队自主研发的 PDF解析神器正式亮相并同步开源模型。这款基于Logics-Parsing模型构建的AI工具直指当前PDF解析领域的技术痛点,显著提升复杂文档的结构…
592 0
PDF解析迎来技术革新!阿里新产品实现复杂文档端到端结构化处理
|
传感器 自动驾驶 算法
SLAM:SLAM(即时定位与地图构建)的简介、发展、案例应用之详细攻略
SLAM:SLAM(即时定位与地图构建)的简介、发展、案例应用之详细攻略
|
4月前
|
网络虚拟化 虚拟化 Docker
记一次Windows端口占用问题排查
netstat命令排查不出的Windows端口占用问题的解决方案,附快速排查脚本
450 0
|
5月前
|
人工智能 负载均衡 监控
使用 Go 和 Gin 实现高可用负载均衡代理服务器
本文基于Go语言和Gin框架,实现了一个企业级负载均衡代理服务器,支持动态路由、健康检查、会话保持等功能。具备高可用性与高性能,单节点支持100k+ QPS,延迟达亚毫秒级,并提供完整的压力测试方案与优化建议。
195 7
|
7月前
|
前端开发 开发工具 Android开发
小红书APP的全新鸿蒙NEXT端性能优化技术实践
从 2023 年开始,鸿蒙的优势愈发明显,已经成为可与 iOS、安卓媲美的第三大移动操作系统。从一些抖音视频中也可以看出,鸿蒙在流畅性方面甚至在某些层面上超过了 iOS。本次分享的主题是小红书在鸿蒙平台上的工程实践,主要聚焦于性能优化和探索。
539 10
|
5月前
|
Android开发 数据安全/隐私保护
安卓手机修改设备id, 安卓硬改一键新机,手机机型修改(伪装)
提供了完整的设备信息修改功能,包含设备模板配置、基础信息修改、网络信息修改、模拟器检测绕
WK
|
移动开发 UED HTML5
HTML5新增了哪些表单属性
HTML5新增的表单属性包括:autocomplete(启用或禁用自动完成建议)、autofocus(自动聚焦)、form(关联表单外的表单元素)、formaction等重写版本(自定义提交行为)、height/width(设置图像输入尺寸)、list(指定可选列表)、min/max/step(设置数值范围)、multiple(多选文件/选项)、pattern(正则表达式验证)、placeholder(占位符提示)和required(必填校验)。这些新功能显著提升了表单的灵活性和用户体验,使数据输入更加准确有效。
WK
214 1
|
安全 API 开发工具
开发api数据接口的工作步骤
本文概述了使用Python的Flask框架开发简单API数据接口的基本步骤。首先,需明确API提供的数据及其来源,确保数据的真实可靠。其次,选择合适的开发工具和技术栈,如Python结合Flask,并安装所需环境。编写代码时,应导入必要模块、创建应用实例、定义数据、设计路由及处理函数,并考虑错误处理和日志记录。测试阶段,在本地启动服务器并使用工具验证功能和性能。最后,选择合适平台部署API,并确保其稳定性和安全性。在整个过程中,需注重数据安全、代码质量及系统性能优化。
|
搜索推荐
报错信息 "busy p..."
报错信息 "busy p..."
1440 1
|
传感器 监控 物联网
认识物联网层次架构设计
物联网可以分为三个层次,底层是用来感知数据的感知层,即利用传感器、二维码、RFID等设备随时随地获取物体的信息。第二层是数据传输处理的网络层,即通过各种传感网络与互联网的融合,将对象当前的信息实时准确地传递出去。第三层则是与行业需求结合的应用层,即通过智能计算、云计算等将对象进行智能化控制。
1887 3