语义分割实验:Unet网络/MSRC2数据集

简介: 本实验使用Unet网络对MSRC2数据集进行划分
本实验使用Unet网络对MSRC2数据集进行划分
源代码文件和MSRC2数据集获取方式见文末

1.数据划分

把图片数据从文件夹整理成csv文件,每一行代表其路径

class image2csv(object):
    # 分割训练集 验证集 测试集
    # 做成对应的txt
    def __init__(self, data_root, image_dir, label_dir, slice_data, width_input, height_input):
        self.data_root = data_root
        self.image_dir = image_dir
        self.label_dir = label_dir
        self.slice_train = slice_data[0]
        self.slice_val = slice_data[1]
        self.width = width_input
        self.height = height_input
    def read_path(self):
        images = []
        labels = []
        for i, im in enumerate(os.listdir(self.image_dir)):
            label_name = im.split('.')[0] + '_GT' + '.bmp'
            # 由于各图片大小不同,这里进行简单的筛选,只有长宽均大于200px才被选取
            if os.path.exists(os.path.join(self.label_dir, label_name)):
                size_w, size_h = Image.open(
                    os.path.join(self.image_dir, im)).size
                size_lw, size_lh = Image.open(
                    os.path.join(self.label_dir, label_name)).size
                if min(size_w, size_lw) > self.width and min(size_h, size_lh) > self.height:
                    images.append(os.path.join(self.image_dir, im))
                    labels.append(os.path.join(self.label_dir, label_name))
                else:
                    continue
        self.data_length = len(images)  # 两个文件夹都有的图片的长度
        data_path = {
            'image': images,
            'label': labels,
        }

        return data_path
    def generate_csv(self):
        data_path = self.read_path()  # 存放了路径
        data_path_pd = pd.DataFrame(data_path)
        train_slice_point = int(self.slice_train*self.data_length)  # 0.7*len
        validation_slice_point = int(
            (self.slice_train+self.slice_val)*self.data_length)  # 0.8*len

        train_csv = data_path_pd.iloc[:train_slice_point, :]
        validation_csv = data_path_pd.iloc[train_slice_point:validation_slice_point, :]
        test_csv = data_path_pd.iloc[validation_slice_point:, :]

        train_csv.to_csv(os.path.join(
            self.data_root, 'train.csv'), header=None, index=None)
        validation_csv.to_csv(os.path.join(
            self.data_root, 'val.csv'), header=None, index=None)
        test_csv.to_csv(os.path.join(self.data_root, 'test.csv'),
                        header=False, index=False)

2.数据预处理

颜色与分类标签的转换

语义分割主要是构建一个颜色图(colormap),对每一类分割的对象分别给予不同的颜色标注。

def colormap(n):
    cmap = np.zeros([n, 3]).astype(np.uint8)
    for i in np.arange(n):
        r, g, b = np.zeros(3)
        for j in np.arange(8):
            r = r + (1 << (7 - j)) * ((i & (1 << (3 * j))) >> (3 * j))
            g = g + (1 << (7 - j)) * ((i & (1 << (3 * j + 1))) >> (3 * j + 1))
            b = b + (1 << (7 - j)) * ((i & (1 << (3 * j + 2))) >> (3 * j + 2))
        cmap[i, :] = np.array([r, g, b])
    return cmap
   
class label2image():
    def __init__(self, num_classes=22):
        self.colormap = colormap(256)[:num_classes].astype('uint8')
    def __call__(self, label_pred, label_true):
        pred = self.colormap[label_pred]
        true = self.colormap[label_true]
        return pred, true

class image2label():
    def __init__(self, num_classes=22):
        # 给每一类都来一种颜色
        colormap = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
                    [0, 0, 128], [0, 128, 128], [128, 128, 128], [192, 0, 0],
                    [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128],
                    [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0],
                    [0, 192, 0], [128, 64, 128], [
                        0, 192, 128], [128, 192, 128],
                    [64, 64, 0], [192, 64, 0]]
        self.colormap = colormap[:num_classes]
        # 创建256^3 次方空数组,颜色的所有组合
        cm2lb = np.zeros(256 ** 3)
        for i, cm in enumerate(self.colormap):
            cm2lb[(cm[0] * 256 + cm[1]) * 256 + cm[2]] = i  # 符合这种组合的标记这一类
        self.cm2lb = cm2lb

    def __call__(self, image):
        image = np.array(image, dtype=np.int64)
        idx = (image[:, :, 0] * 256 + image[:, :, 1]) * 256 + image[:, :, 2]
        label = np.array(self.cm2lb[idx], dtype=np.int64)  # 根据颜色条找到这个label的标号
        return label

图片裁剪

class RandomCrop(object):
    """
    自定义实现图像与label随机裁剪相同的位置
    """
    def __init__(self, size):
        self.size = size

    @staticmethod
    def get_params(img, output_size):
        w, h = img.size
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img, label):
        i, j, h, w = self.get_params(img, self.size)
        return img.crop((j, i, j + w, i + h)), label.crop((j, i, j + w, i + h))

3.数据加载

class CustomDataset(Dataset):
    def __init__(self, data_root_csv, input_width, input_height, test=False):
        # 在子类进行初始化时,也想继承父类的__init__()就通过super()实现
        super(CustomDataset, self).__init__()
        self.data_root_csv = data_root_csv
        self.data_all = pd.read_csv(self.data_root_csv)
        self.image_list = list(self.data_all.iloc[:, 0])
        self.label_list = list(self.data_all.iloc[:, 1])
        self.width = input_width
        self.height = input_height

    def __len__(self):
        return len(self.image_list)

    def __getitem__(self, index):
        img = Image.open(self.image_list[index]).convert('RGB')
        label = Image.open(self.label_list[index]).convert('RGB')

        img, label = self.train_transform(
            img, label, crop_size=(self.width, self.height))

        # assert(img.size == label.size)s
        return img, label

    def train_transform(self, image, label, crop_size=(256, 256)):

        image, label = RandomCrop(crop_size)(
            image, label)  # 第一个括号是实例话对象,第二个是__call__方法
        tfs = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([.485, .456, .406], [.229, .224, .225])
        ])
        image = tfs(image)
        label = image2label()(label)
        label = torch.from_numpy(label).long()
        return image, label

4.Unet 网络结构

在这里插入图片描述

双卷积结构

在这里插入图片描述

class DoubleConv(nn.Module):
    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.double_conv(x)

下采样

在这里插入图片描述

class Down(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConv(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)

上采样

在这里插入图片描述

class Up(nn.Module):
    def __init__(self, in_channels, out_channels, bilinear=True):
        super().__init__()
        if bilinear:
            self.up = nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        else:
            self.up = nn.ConvTranspose2d(
                in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)

输出

class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        return self.conv(x)

整体结构

class UNet(nn.Module):
    def __init__(self, n_channels, n_classes, bilinear=True):
        super(UNet, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear
        self.inc = DoubleConv(n_channels, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        factor = 2 if bilinear else 1
        self.down4 = Down(512, 1024 // factor)
        self.up1 = Up(1024, 512 // factor, bilinear)
        self.up2 = Up(512, 256 // factor, bilinear)
        self.up3 = Up(256, 128 // factor, bilinear)
        self.up4 = Up(128, 64, bilinear)
        self.outc = OutConv(64, n_classes)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        logits = self.outc(x)
        return logits

5.评估指标:MIoU

在这里插入图片描述

# 得到混淆矩阵
def _fast_hist(label_true, label_pred, n_class):
    mask = (label_true >= 0) & (label_true < n_class)
    hist = np.bincount(
        n_class * label_true[mask].astype(int) +
        label_pred[mask], minlength=n_class ** 2).reshape(n_class, n_class)
    return hist

# 计算MIOU
def miou_score(label_trues, label_preds, n_class):
    hist = np.zeros((n_class, n_class))
    for lt, lp in zip(label_trues, label_preds):
        hist += _fast_hist(lt.flatten(), lp.flatten(), n_class)
    iou = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist))
    miou = np.nanmean(iou)
    return miou

6.训练

GPU_ID = 0
INPUT_WIDTH = 200
INPUT_HEIGHT = 200
BATCH_SIZE = 2
NUM_CLASSES = 22
LEARNING_RATE = 1e-3
epoch = 300
net = UNet(3, NUM_CLASSES)
# -------------------- 生成csv ------------------
DATA_ROOT = './MSRC2/'
image = os.path.join(DATA_ROOT, 'Images')
label = os.path.join(DATA_ROOT, 'GroundTruth')
slice_data = [0.7, 0.1, 0.2]  # 训练 验证 测试所占百分比
tocsv = image2csv(DATA_ROOT, image, label, slice_data,
                  INPUT_WIDTH, INPUT_HEIGHT)
tocsv.generate_csv()
# -------------------------------------------
model_path = './model_result/best_model_UNet.mdl'

train_csv_dir = 'MSRC2/train.csv'
val_csv_dir = 'MSRC2/val.csv'
train_data = CustomDataset(train_csv_dir, INPUT_WIDTH, INPUT_HEIGHT)
train_dataloader = DataLoader(
    train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)

val_data = CustomDataset(val_csv_dir, INPUT_WIDTH, INPUT_HEIGHT)
val_dataloader = DataLoader(
    val_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)

net = UNet(3, NUM_CLASSES)
use_gpu = torch.cuda.is_available()

# 构建网络
optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE, weight_decay=1e-4)
criterion = nn.CrossEntropyLoss()
if use_gpu:
    torch.cuda.set_device(GPU_ID)
    net.cuda()
    criterion = criterion.cuda()

if os.path.exists(model_path):
    net.load_state_dict(torch.load(model_path))
    print('successful load weight!')
else:
    print('not successful load weight')

# 训练验证
# def train():
best_score = 0.0
for e in range(epoch):
    net.train()
    train_loss = 0.0
    label_true = torch.LongTensor()
    label_pred = torch.LongTensor()
    for i, (batchdata, batchlabel) in enumerate(train_dataloader):
        if use_gpu:
            batchdata, batchlabel = batchdata.cuda(), batchlabel.cuda()

        output = net(batchdata)
        output = F.log_softmax(output, dim=1)
        loss = criterion(output, batchlabel)

        pred = output.argmax(dim=1).squeeze().data.cpu()
        real = batchlabel.data.cpu()

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_loss += loss.cpu().item() * batchlabel.size(0)
        label_true = torch.cat((label_true, real), dim=0)
        label_pred = torch.cat((label_pred, pred), dim=0)

    train_loss /= len(train_data)
    miou = miou_score(
        label_true.numpy(), label_pred.numpy(), NUM_CLASSES)

    print('\nepoch:{}, train_loss:{:.4f},miou:{:.4f}'.format(
        e + 1, train_loss, miou))

    net.eval()
    val_loss = 0.0
    val_label_true = torch.LongTensor()
    val_label_pred = torch.LongTensor()
    with torch.no_grad():
        for i, (batchdata, batchlabel) in enumerate(val_dataloader):
            if use_gpu:
                batchdata, batchlabel = batchdata.cuda(), batchlabel.cuda()

            output = net(batchdata)
            output = F.log_softmax(output, dim=1)
            loss = criterion(output, batchlabel)

            pred = output.argmax(dim=1).data.cpu()
            real = batchlabel.data.cpu()

            val_loss += loss.cpu().item() * batchlabel.size(0)
            val_label_true = torch.cat((val_label_true, real), dim=0)
            val_label_pred = torch.cat((val_label_pred, pred), dim=0)

        val_loss /= len(val_data)
        val_miou = miou_score(val_label_true.numpy(),
                              val_label_pred.numpy(), NUM_CLASSES)
    print('epoch:{}, val_loss:{:.4f}, miou:{:.4f}'.format(
        e + 1, val_loss, val_miou))

    # 通过验证集的val_miou来判断模型效果,保存最好的模型权重
    score = val_miou
    if score > best_score:
        best_score = score
        torch.save(net.state_dict(), model_path)

7.测试

GPU_ID = 0
INPUT_WIDTH = 200
INPUT_HEIGHT = 200
BATCH_SIZE = 2
NUM_CLASSES = 22
LEARNING_RATE = 1e-3
model_path = './model_result/best_model_UNet.mdl'
torch.cuda.set_device(0)
net = UNet(3, NUM_CLASSES)
# 加载网络进行测试
test_csv_dir = './MSRC2/train.csv'
testset = CustomDataset(test_csv_dir, INPUT_WIDTH, INPUT_HEIGHT)
test_dataloader = DataLoader(testset, batch_size=15, shuffle=False)
net.load_state_dict(torch.load(model_path, map_location='cuda:0'))
test_label_true = torch.LongTensor()
test_label_pred = torch.LongTensor()
# 这里只提取一个batch来测试,即15张图片
for (val_image, val_label) in test_dataloader:
    net.cuda()
    out = net(val_image.cuda())
    pred = out.argmax(dim=1).squeeze().data.cpu().numpy()
    label = val_label.data.numpy()
    output = F.log_softmax(out, dim=1)

    pred = output.argmax(dim=1).data.cpu()
    real = val_label.data.cpu()

    test_label_true = torch.cat((test_label_true, real), dim=0)
    test_label_pred = torch.cat((test_label_pred, pred), dim=0)

    test_miou = miou_score(test_label_true.numpy(),
                           test_label_pred.numpy(), NUM_CLASSES)

    print("测试集上的miou为:" + str(test_miou))
    val_pred, val_label = label2image(NUM_CLASSES)(pred, label)
    for i in range(15):
        val_imag = val_image[i]
        val_pre = val_pred[i]
        val_labe = val_label[i]
        # 反归一化
        mean = [.485, .456, .406]
        std = [.229, .224, .225]
        x = val_imag
        for j in range(3):
            x[j] = x[j].mul(std[j])+mean[j]
        img = x.mul(255).byte()
        img = img.numpy().transpose((1, 2, 0))  # 原图
        fig, ax = plt.subplots(1, 3, figsize=(30, 30))
        ax[0].imshow(img)
        ax[1].imshow(val_labe)
        ax[2].imshow(val_pre)
        plt.show()
        plt.savefig('./pic_results/pic_UNet_{}.png'.format(i))
    break

理论上,应该用测试集进行测试,但测试的结果惨不忍观。可能是由于训练次数不足导致,在上面这段代码中,直接导入训练集进行查看,下面是和GroundTruth进行对比参照图。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
3月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
930 0
|
3月前
|
运维 安全 网络安全
|
3月前
|
网络协议 网络虚拟化 网络架构
【网络实验】/主机/路由器/交换机/网关/路由协议/RIP+OSPF/DHCP(上)
【网络实验】/主机/路由器/交换机/网关/路由协议/RIP+OSPF/DHCP(上)
89 1
|
4月前
|
网络架构
静态路由 网络实验
本文介绍了如何通过配置静态路由实现不同网络设备间的通信,包括网络拓扑图、设备IP配置、查看路由表信息、配置静态路由和测试步骤。通过在路由器上设置静态路由,使得不同子网内的设备能够互相通信。
静态路由 网络实验
|
4月前
|
网络虚拟化
网络实验 VlAN 中 Trunk Access端口的说明及实验
本文介绍了VLAN技术及其在网络实验中的应用,包括Access端口和Trunk端口的工作原理,以及如何通过实验划分不同VLAN实现内部通信和跨交换机实现VLAN间通信的详细步骤和配置。
网络实验 VlAN 中 Trunk Access端口的说明及实验
|
3月前
|
网络协议 数据安全/隐私保护 网络虚拟化
【网络实验】/主机/路由器/交换机/网关/路由协议/RIP+OSPF/DHCP(下)
【网络实验】/主机/路由器/交换机/网关/路由协议/RIP+OSPF/DHCP(下)
79 0
|
3月前
|
移动开发 网络协议 测试技术
Mininet多数据中心网络拓扑流量带宽实验
Mininet多数据中心网络拓扑流量带宽实验
94 0
|
3月前
|
Kubernetes 容器
基于Ubuntu-22.04安装K8s-v1.28.2实验(三)数据卷挂载NFS(网络文件系统)
基于Ubuntu-22.04安装K8s-v1.28.2实验(三)数据卷挂载NFS(网络文件系统)
212 0
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
5月前
|
机器学习/深度学习 安全 网络协议
网络安全公开数据集Maple-IDS,恶意流量检测数据集开放使用!
【8月更文挑战第29天】Maple-IDS 是东北林业大学网络安全实验室发布的网络入侵检测评估数据集,旨在提升异常基础入侵检测和预防系统的性能与可靠性。该数据集包含多种最新攻击类型,如 DDoS 和 N-day 漏洞,覆盖多种服务和网络行为,兼容 CIC-IDS 格式,便于直接使用或生成 csv 文件,适用于多种现代协议。
260 0