算法系统学习-找第k小值(非等分分治)

简介: 该系列是基于有一定语言基础(C,C++,Java等等)和基本的数据结构基础进行的算法学习专栏,如果觉得有点吃力 😥 ,建议先了解前提知识再学习喔!本个专栏会将用更容易理解的表达去学习算法,如果在一些表述上存在问题还请各位多多指点

非等分二分法


现实中常见的应用就是寻找中值元素(中值是一个很有用的统计量,例如中间工资,中间年龄,中间重量等),因此经常会遇到在“一组数据中取第k小的值”。

按照以前的最好的排序算法的复杂性是O(nlogn),但我们可以利用二分法将复杂度降为O(n),可这个二分法不是简单典型的二分法分解成完全独立,相似的两个问题,因为在选出分解后第一组的第k小的数据和第二组的第k小的数据,不能保证这两个数据之一是原问题的解。


Case1:

求一组数的第二小的数

算法分析:

在用二等分法分解的两个子集中,无论只选取第二小数据或只选取最小的数据,合并处理后都有可能得不到原问题的解。但若在两个子集中都选取最小的两个值,那原问题中第二小的数据则一定在这四个数据中。由此,将问题转化成“求一组数中较小的两个数”后,二等分法分解就可将原问题“分解为原问题独立且相似的两个问题”。

这样,回溯合并的过程就是从两个子问题选出的共4个数中,选取出较小的两个数,直到回溯结束,就得到一组数中较小的两个数,从而得到了原问题的解。


算法设计:

float a[100];
main(){
    int n;
    float min2;
    cin>>n;
    for(i=0;i<n-1;i++){
    cin>>a[i];
    }
    min2=second(n);
    cout<<min2;
}
second(int n){
  float min2,min1;
    two(0,n-1,min2,min1);
    return min2;
}
two(int i,int j, float &fmin2,float &fmin1){
float lmin2,lmin1,rmin2,rmin1;
    int mid;
    if(i=j){
      fmin2=fmin1=a[i];
    }else if(i=j-1){
      if(a[i]<a[j]){
        fmin2=a[j];
        fmin1=a[i];
        }else{
        fmin2=a[i];
        fmin1=a[j];
        }
    }else{
    mid=(i+j)/2;
    two(i,mid,lmin2,lmin1);
    two(mid+1,j,rmin2,rmin1);
        if(lmin<rmin1){
          if(lmin2<rmin1){
                fmin1=lmin;
                fmin2=lmin2;
            }else{
            fmin1=lmin1;
            fmin2=rminl;
            }
        }else{
        if(rmin2<lmin1){
        fmin1=rmin1;
        fmin2=rmin2;
        }else{
        fmin1=rmin1;
        fmin2=lmin1;
        }
        }
    }
}


小结:

以上算法利用“分解为与原问题相似的两个子问题”的技巧,解决了一个个简单的排序问题。但对于选取第k小元素的问题,则从效率上是无法行得通的。难道就不能使用二分法解决这类问题?分治法中当然不仅仅包括二分法,也可以使用“非等份分解方法”的例子

Case2:

对于给定的n个元素的数组a【0:n-1】,要求从中找出第k小的元素,要求找到第k小的元素


问题分析:

选择问题的一个应用就是寻找中值元素,此时k=【n/2】。我们可以首先选取第一个数作为分界数据,将比它小的数据存在它的左边,将比它大的数据存储在右边,它存储在左右两个子集之间。(类似荷兰国旗问题)这样左右子集就是原问题分解后的独立子问题,再用同样的方法,解决这些子问题。知道每个子集只有一个数据,自然就有序了,也就完成了全部数据的排序工作。

可以通过改写快排算法,一趟排序分解出的左子集中元素个数left,可能有一下三种情况:

  1. nleft=k-1 ,则分界数据就是选择问题的答案
  2. nleft>k-1,则选择问题的答案继续在左子集中找,问题规模变小了
  3. nleft<k-1,则选择问题的答案继续在右子集中找,问题变成选择第k-nleft-1小的数,问题的规模也变小了

算法设计:

xzwt(int a[],int n,int k)  //返回a【0:n-1】中第k小的元素
{    if(k< 1|| k>n){
error();
}
 return select(a,0,n-1,k);
 }
select (int a[],int left,int right,int k){
//在a【left:right】中选择第k小的元素
    if(left >=right){
    return a[left];
    }
    int i=left;//从左至右的指针
    j=right+1;//从右至左的指针
    int pivot =a[left];
    while(1){
      do{
            //在左侧寻找>=pivot的元素
        i=i+1;
        }while(a[i]<pivot);
        do{
        j=j-1;
        }while(a[j]>pivot);//在右侧寻找<=pivot的元素
        if(i>=j){
        break;//未发现交换对象
        }
       Swap(a[i],a[j]);
    }
    if(j-left+1=k){
    return pivot;
    }
    a[left]=a[j];//设置pivot
    a[j]=pivot;
    if(j-left+1<k){   。//对一个段进行递归调用
    return select(a,j+1,right,k-j-1+left);
    }else{
    return select(a,left,j-1,k);
    }
}



目录
相关文章
|
25天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
89 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
311 55
|
2月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
127 66
|
18天前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
123 11
架构学习:7种负载均衡算法策略
|
9天前
|
存储 监控 算法
内网监控系统之 Go 语言布隆过滤器算法深度剖析
在数字化时代,内网监控系统对企业和组织的信息安全至关重要。布隆过滤器(Bloom Filter)作为一种高效的数据结构,能够快速判断元素是否存在于集合中,适用于内网监控中的恶意IP和违规域名筛选。本文介绍其原理、优势及Go语言实现,提升系统性能与响应速度,保障信息安全。
22 5
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
203 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
供应链 算法
【算法】——快排,分治算法合集
本文主要介绍排序中的快排思想的应用,做到一法通万法的效果
|
29天前
|
算法
基于爬山法MPPT最大功率跟踪算法的光伏发电系统simulink建模与仿真
本课题基于爬山法MPPT算法,对光伏发电系统进行Simulink建模与仿真。使用MATLAB2022a版本,通过调整光伏电池的工作状态以实现最大功率输出。爬山法通过逐步优化工作点,确保光伏系统在不同条件下均能接近最大功率点。仿真结果显示该方法的有效性,验证了模型的正确性和可行性。
|
2月前
|
监控 算法 JavaScript
基于 Node.js Socket 算法搭建局域网屏幕监控系统
在数字化办公环境中,局域网屏幕监控系统至关重要。基于Node.js的Socket算法实现高效、稳定的实时屏幕数据传输,助力企业保障信息安全、监督工作状态和远程技术支持。通过Socket建立监控端与被监控端的数据桥梁,确保实时画面呈现。实际部署需合理分配带宽并加密传输,确保信息安全。企业在使用时应权衡利弊,遵循法规,保障员工权益。
43 7
|
2月前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
51 6
【AI系统】QNNPack 算法