SQL调优指南—调优方法论

简介: 找出需调优的慢SQL后,先通过EXPLAIN查看执行计划,然后通过如下方法优化SQL:下推更多计算至存储层MySQL,适当增加索引,优化执行计划。

下推更多的计算

PolarDB-X会尽可能将更多的计算下推到存储层MySQL。下推计算能够减少数据传输,减少网络层和PolarDB-X层的开销,提升SQL语句的执行效率。PolarDB-X支持下推几乎所有算子,包括:

  • 过滤条件,如WHERE或HAVING中的条件。
  • 聚合算子,如COUNT,GROUP BY等,会分成两阶段进行聚合计算。
  • 排序算子,如ORDER BY。
  • JOIN和子查询,两边JOIN Key分片方式必须一样,或其中一边为广播表。

如下示例讲解如何将更多的计算下推到MySQL来加速执行


> EXPLAIN select * from customer, nation where c_nationkey = n_nationkey and n_regionkey = 3;
Project(c_custkey="c_custkey", c_name="c_name", c_address="c_address", c_nationkey="c_nationkey", c_phone="c_phone", c_acctbal="c_acctbal", c_mktsegment="c_mktsegment", c_comment="c_comment", n_nationkey="n_nationkey", n_name="n_name", n_regionkey="n_regionkey", n_comment="n_comment")
  BKAJoin(condition="c_nationkey = n_nationkey", type="inner")
    Gather(concurrent=true)
      LogicalView(tables="nation", shardCount=2, sql="SELECT * FROM `nation` AS `nation` WHERE (`n_regionkey` = ?)")
    Gather(concurrent=true)
      LogicalView(tables="customer_[0-7]", shardCount=8, sql="SELECT * FROM `customer` AS `customer` WHERE (`c_nationkey` IN ('?'))")

若执行计划中出现了BKAJOIN,BKAJOIN每次从左表获取一批数据,就会拼成一个IN查询取出右表相关联的行,并在最后执行JOIN操作。由于左表数据量很大,需要取很多次才能完成查询,执行很慢。

无法下推JOIN的原因是:当前情况下,nation是按主键n_nationkey切分的,而本查询的JOIN Key是c_custkey,二者不同,所以下推失败。

考虑到nation (国家)表数据量并不大、且几乎没有修改操作,可以将其重建成如下广播表:


--- 修改后 ---

CREATE TABLE `nation` (
`n_nationkey` int(11) NOT NULL,
`n_name` varchar(25) NOT NULL,
`n_regionkey` int(11) NOT NULL,
`n_comment` varchar(152) DEFAULT NULL,
PRIMARY KEY (`n_nationkey`)
) BROADCAST; --- 声明为广播表

修改后,可以看到执行计划中不再出现JOIN,几乎所有计算都被下推到存储层MySQL执行了(LogicalView中),而上层仅仅是将结果收集并返回给用户(Gather算子),执行性能大大增强。


> EXPLAIN select * from customer, nation where c_nationkey = n_nationkey and n_regionkey = 3;
Gather(concurrent=true)
LogicalView(tables="customer_[0-7],nation", shardCount=8, sql="SELECT * FROM `customer` AS `customer` INNER JOIN `nation` AS `nation` ON ((`nation`.`n_regionkey` = ?) AND (`customer`.`c_nationkey` = `nation`.`n_nationkey`))")

更多关于下推的原理和优化,请参见查询改写与下推

增加索引

PolarDB-X支持全局二级索引

以下以慢SQL示例来讲解如何通过GSI下推更多算子


> EXPLAIN select o_orderkey, c_custkey, c_name from orders, customer
where o_custkey = c_custkey and o_orderdate = '2019-11-11' and o_totalprice > 100;
Project(o_orderkey="o_orderkey", c_custkey="c_custkey", c_name="c_name")
HashJoin(condition="o_custkey = c_custkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="customer_[0-7]", shardCount=8, sql="SELECT `c_custkey`, `c_name` FROM `customer` AS `customer`")
Gather(concurrent=true)
LogicalView(tables="orders_[0-7]", shardCount=8, sql="SELECT `o_orderkey`, `o_custkey` FROM `orders` AS `orders` WHERE ((`o_orderdate` = ?) AND (`o_totalprice` > ?))")

执行计划中,orders按照o_orderkey拆分而customer按照c_custkey拆分,由于拆分维度不同JOIN算子不能下推。考虑到2019-11-11当天总价高于100的订单非常多,跨分片JOIN耗时很高,需要在orders表上创建一个GSI来使得JOIN算子可以下推。查询中使用到了orders表的o_orderkey, o_custkey, o_orderdate, o_totalprice四列,其中o_orderkey, o_custkey分别是主表和索引表的拆分键,o_orderdate, o_totalprice作为覆盖列包含在索引中用于避免回表。


> create global index i_o_custkey on orders(`o_custkey`) covering(`o_orderdate`, `o_totalprice`)
DBPARTITION BY HASH(`o_custkey`) TBPARTITION BY HASH(`o_custkey`) TBPARTITIONS 4;

增加GSI并通过force index(i_o_custkey)强制使用索引后,跨分片JOIN变为MySQL上的局部JOIN (IndexScan中),并且通过覆盖列避免了回表操作,查询性能得到提升。


> EXPLAIN select o_orderkey, c_custkey, c_name from orders force index(i_o_custkey), customer
where o_custkey = c_custkey and o_orderdate = '2019-11-11' and o_totalprice > 100;
Gather(concurrent=true)
IndexScan(tables="i_o_custkey_[0-7],customer_[0-7]", shardCount=8, sql="SELECT `i_o_custkey`.`o_orderkey`, `customer`.`c_custkey`, `customer`.`c_name` FROM `i_o_custkey` AS `i_o_custkey` INNER JOIN `customer` AS `customer` ON (((`i_o_custkey`.`o_orderdate` = ?) AND (`i_o_custkey`.`o_custkey` = `customer`.`c_custkey`)) AND (`i_o_custkey`.`o_totalprice` > ?))")

更多关于全局二级索引的使用细节,请参见全局二级索引

执行计划调优

大多数情况下,PolarDB-X的查询优化器可以自动产生最佳的执行计划。但是,少数情况下,可能因为统计信息存在缺失、误差等,导致生成的执行计划不够好,这时,可以通过Hint来干预优化器行为,使之生成更好的执行计划。如下示例将讲解执行计划的调优。


> EXPLAIN select o_orderkey, c_custkey, c_name from orders, customer
where o_custkey = c_custkey and o_orderdate = '2019-11-15' and o_totalprice < 10;
Project(o_orderkey="o_orderkey", c_custkey="c_custkey", c_name="c_name")
HashJoin(condition="o_custkey = c_custkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="customer_[0-7]", shardCount=8, sql="SELECT `c_custkey`, `c_name` FROM `customer` AS `customer`")
Gather(concurrent=true)
LogicalView(tables="orders_[0-7]", shardCount=8, sql="SELECT `o_orderkey`, `o_custkey` FROM `orders` AS `orders` WHERE ((`o_orderdate` = ?) AND (`o_totalprice` < ?))")

实际上2019-11-15这一天总价低于10元的订单数量很小,只有几条,这时候用BKAJOIN是比Hash JOIN更好的选择(关于BKAJOIN和Hash JOIN的介绍,请参见JOIN优化和执行

通过如下/+TDDL:BKA_JOIN(orders, customer)/ Hint强制优化器使用BKAJOIN(LookupJOIN):


> EXPLAIN /+TDDL:BKA_JOIN(orders, customer)/ select o_orderkey, c_custkey, c_name from orders, customer
where o_custkey = c_custkey and o_orderdate = '2019-11-15' and o_totalprice < 10;
Project(o_orderkey="o_orderkey", c_custkey="c_custkey", c_name="c_name")
BKAJoin(condition="o_custkey = c_custkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="orders_[0-7]", shardCount=8, sql="SELECT `o_orderkey`, `o_custkey` FROM `orders` AS `orders` WHERE ((`o_orderdate` = ?) AND (`o_totalprice` < ?))")
Gather(concurrent=true)
LogicalView(tables="customer_[0-7]", shardCount=8, sql="SELECT `c_custkey`, `c_name` FROM `customer` AS `customer` WHERE (`c_custkey` IN ('?'))")

可以选择执行加如下Hint的查询:


/+TDDL:BKA_JOIN(orders, customer)/ select o_orderkey, c_custkey, c_name from orders, customer where o_custkey = c_custkey and o_orderdate = '2019-11-15' and o_totalprice < 10;

以上操作加快了SQL查询速度。为了让Hint发挥作用,可以将应用中的SQL加上Hint,或者更方便的方式是使用执行计划管理(Plan Management)功能对该SQL固定执行计划。具体操作如下:


BASELINE FIX SQL /+TDDL:BKA_JOIN(orders, customer)/ select o_orderkey, c_custkey, c_name from orders, customer where o_custkey = c_custkey and o_orderdate = '2019-11-15';

这样一来,对于这条SQL(参数可以不同),PolarDB-X都会采用如上固定的执行计划。更多关于执行计划管理的信息,请参见执行计划管理

并发执行

用户可以通过HINT /+TDDL:PARALLELISM=4/ 指定并行度,充分利用多核能力加速计算。比如以下例子:


mysql> explain physical select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 or
der by cnt limit 5, 10;
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| PLAN |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorType: AP_LOCAL |
| The Query's MaxConcurrentParallelism: 2 |
| Fragment 1 |
| Shuffle Output layout: [BIGINT, BIGINT] Output layout: [BIGINT, BIGINT] |
| Output partitioning: SINGLE [] Parallelism: 1 |
| TopN(sort="cnt ASC", offset=?2, fetch=?3) |
| Filter(condition="cnt > ?1") |
| HashAgg(group="k", cnt="COUNT()") |
| BKAJoin(condition="k = id", type="inner") |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k)) |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))") |
| Fragment 0 |
| Shuffle Output layout: [BIGINT, BIGINT] Output layout: [BIGINT, BIGINT] |
| Output partitioning: SINGLE [] Parallelism: 1 Splits: 16 |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)") |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+

默认的并行度并不高,通过强制指定并行度,利用单机或者多机并行模式来加速。


mysql> explain physical /+TDDL:PARALLELISM=8/select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;                                                                                                                                                     |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorMode: AP_LOCAL |
| Fragment 0 dependency: [] parallelism: 8 |
| BKAJoin(condition="k = id", type="inner") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))") |
| Fragment 1 dependency: [] parallelism: 8 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k, INTEGER_UNSIGNED k0)) |
| Fragment 2 dependency: [0, 1] parallelism: 8 |
| Filter(condition="cnt > ?1") |
| HashAgg(group="k", cnt="COUNT()") |
| RemoteSource(sourceFragmentIds=[1], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k, INTEGER_UNSIGNED k0)) |
| Fragment 3 dependency: [0, 1] parallelism: 1 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[2], type=RecordType(INTEGER_UNSIGNED k, BIGINT cnt)) |
| Fragment 4 dependency: [2, 3] parallelism: 1 |
| TopN(sort="cnt ASC", offset=?2, fetch=?3) |
| RemoteSource(sourceFragmentIds=[3], type=RecordType(INTEGER_UNSIGNED k, BIGINT cnt)) |
+---------------------------------------------------------------------------------------------------------
相关文章
|
3天前
|
数据采集 人工智能 安全
|
12天前
|
云安全 监控 安全
|
4天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
1069 151
|
4天前
|
编解码 人工智能 机器人
通义万相2.6,模型使用指南
智能分镜 | 多镜头叙事 | 支持15秒视频生成 | 高品质声音生成 | 多人稳定对话
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1743 9
|
9天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
687 152
|
11天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
655 12
|
6天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
415 4