【spark系列5】spark 3.0.1集成delta 0.7.0原理解析--delta如何进行DDL DML操作以及Catalog plugin API

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【spark系列5】spark 3.0.1集成delta 0.7.0原理解析--delta如何进行DDL DML操作以及Catalog plugin API

前提


本文基于 spark 3.0.1

delta 0.7.0

我们都知道delta.io是一个给数据湖提供可靠性的开源存储层的软件,关于他的用处,可以参考Delta Lake,让你从复杂的Lambda架构中解放出来,上篇文章我们分析了delta是如何自定义自己的sql,这篇文章我们分析一下delta数据是如何基于Catalog plugin API进行DDL DML sql操作的(spark 3.x以前是不支持的)


分析


delta在0.7.0以前是不能够进行save表操作的,只能存储到文件中,也就是说他的元数据是和spark的其他元数据是分开的,delta是独立存在的,也是不能和其他表进行关联操作的,只有到了delta 0.7.0版本以后,才真正意义上和spark进行了集成,这也得益于spark 3.x的Catalog plugin API 特性。

还是先从delta的configurate sparksession入手,如下:

import org.apache.spark.sql.SparkSession
val spark = SparkSession
  .builder()
  .appName("...")
  .master("...")
  .config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension")
  .config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog")
  .getOrCreate()

对于第二个配置 config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog")

从spark configuration,我们可以看到对该spark.sql.catalog.spark_catalog的解释是

A catalog implementation that will be used as the v2 interface to Spark's built-in v1 catalog: spark_catalog. This catalog shares its identifier namespace with the spark_catalog and must be consistent with it; for example, if a table can be loaded by the spark_catalog, this catalog must also return the table metadata. To delegate operations to the spark_catalog, implementations can extend 'CatalogExtension'.

也就是说,通过该配置可以实现元数据的统一性,其实这也是spark社区和delta社区进行交互的一种结果


spark 3.x的Catalog plugin API


为了能搞懂delta为什么能够进行DDL和DML操作,就得先知道spark 3.x的Catalog plugin机制SPARK-31121.


首先是interface CatalogPlugin,该接口是catalog plugin的顶级接口,正如注释所说:

 * A marker interface to provide a catalog implementation for Spark.
 * <p>
 * Implementations can provide catalog functions by implementing additional interfaces for tables,
 * views, and functions.
 * <p>
 * Catalog implementations must implement this marker interface to be loaded by
 * {@link Catalogs#load(String, SQLConf)}. The loader will instantiate catalog classes using the
 * required public no-arg constructor. After creating an instance, it will be configured by calling
 * {@link #initialize(String, CaseInsensitiveStringMap)}.
 * <p>
 * Catalog implementations are registered to a name by adding a configuration option to Spark:
 * {@code spark.sql.catalog.catalog-name=com.example.YourCatalogClass}. All configuration properties
 * in the Spark configuration that share the catalog name prefix,
 * {@code spark.sql.catalog.catalog-name.(key)=(value)} will be passed in the case insensitive
 * string map of options in initialization with the prefix removed.
 * {@code name}, is also passed and is the catalog's name; in this case, "catalog-name".

可以通过spark.sql.catalog.catalog-name=com.example.YourCatalogClass集成到spark中

该类的实现还可以集成其他额外的tables views functions的接口,这里就得提到接口TableCatalog,该类提供了与tables相关的方法:

/**
   * List the tables in a namespace from the catalog.
   * <p>
   * If the catalog supports views, this must return identifiers for only tables and not views.
   *
   * @param namespace a multi-part namespace
   * @return an array of Identifiers for tables
   * @throws NoSuchNamespaceException If the namespace does not exist (optional).
   */
  Identifier[] listTables(String[] namespace) throws NoSuchNamespaceException;
  /**
   * Load table metadata by {@link Identifier identifier} from the catalog.
   * <p>
   * If the catalog supports views and contains a view for the identifier and not a table, this
   * must throw {@link NoSuchTableException}.
   *
   * @param ident a table identifier
   * @return the table's metadata
   * @throws NoSuchTableException If the table doesn't exist or is a view
   */
  Table loadTable(Identifier ident) throws NoSuchTableException;

这样就可以基于TableCatalog开发自己的catalog,从而实现multi-catalog support


还得有个接口DelegatingCatalogExtension,这是个实现了CatalogExtension接口的抽象类,而CatalogExtension继承了TableCatalog, SupportsNamespaces。DeltaCatalog实现了DelegatingCatalogExtension ,这部分后续进行分析。

最后还有一个class CatalogManager,这个类是用来管理CatalogPlugins的,且是线程安全的:

/**
 * A thread-safe manager for [[CatalogPlugin]]s. It tracks all the registered catalogs, and allow
 * the caller to look up a catalog by name.
 *
 * There are still many commands (e.g. ANALYZE TABLE) that do not support v2 catalog API. They
 * ignore the current catalog and blindly go to the v1 `SessionCatalog`. To avoid tracking current
 * namespace in both `SessionCatalog` and `CatalogManger`, we let `CatalogManager` to set/get
 * current database of `SessionCatalog` when the current catalog is the session catalog.
 */
// TODO: all commands should look up table from the current catalog. The `SessionCatalog` doesn't
//       need to track current database at all.
private[sql]
class CatalogManager(
    conf: SQLConf,
    defaultSessionCatalog: CatalogPlugin,
    val v1SessionCatalog: SessionCatalog) extends Logging {

我们看到CatalogManager管理了v2版本的 CatalogPlugin和v1版本的sessionCatalog,这个是因为历史的原因导致必须得兼容v1版本


那CatalogManager在哪里被调用呢。

我们看一下BaseSessionStateBuilder ,可以看到该类中才是正宗使用CatalogManager的地方:

/**
   * Catalog for managing table and database states. If there is a pre-existing catalog, the state
   * of that catalog (temp tables & current database) will be copied into the new catalog.
   *
   * Note: this depends on the `conf`, `functionRegistry` and `sqlParser` fields.
   */
  protected lazy val catalog: SessionCatalog = {
    val catalog = new SessionCatalog(
      () => session.sharedState.externalCatalog,
      () => session.sharedState.globalTempViewManager,
      functionRegistry,
      conf,
      SessionState.newHadoopConf(session.sparkContext.hadoopConfiguration, conf),
      sqlParser,
      resourceLoader)
    parentState.foreach(_.catalog.copyStateTo(catalog))
    catalog
  }
  protected lazy val v2SessionCatalog = new V2SessionCatalog(catalog, conf)
  protected lazy val catalogManager = new CatalogManager(conf, v2SessionCatalog, catalog)

SessionCatalog 是v1版本的,主要是跟底层的元数据存储通信,以及管理临时视图,udf的,这一部分暂时不分析,重点放到v2版本的sessionCatalog,

我们看一下V2SessionCatalog:

/**
 * A [[TableCatalog]] that translates calls to the v1 SessionCatalog.
 */
class V2SessionCatalog(catalog: SessionCatalog, conf: SQLConf)
  extends TableCatalog with SupportsNamespaces {
  import org.apache.spark.sql.connector.catalog.CatalogV2Implicits.NamespaceHelper
  import V2SessionCatalog._
  override val defaultNamespace: Array[String] = Array("default")
  override def name: String = CatalogManager.SESSION_CATALOG_NAME
  // This class is instantiated by Spark, so `initialize` method will not be called.
  override def initialize(name: String, options: CaseInsensitiveStringMap): Unit = {}
  override def listTables(namespace: Array[String]): Array[Identifier] = {
    namespace match {
      case Array(db) =>
        catalog
          .listTables(db)
          .map(ident => Identifier.of(Array(ident.database.getOrElse("")), ident.table))
          .toArray
      case _ =>
        throw new NoSuchNamespaceException(namespace)
    }
  }

我们分析一下listTables方法可知,v2的sessionCatalog操作 都是委托给了v1版本的sessionCatalog去操作的,其他的方法也是一样,

而且name默认为CatalogManager.SESSION_CATALOG_NAME,也就是spark_catalog,这里后面也会提到,注意一下。

而且,catalogmanager在逻辑计划中的分析器和优化器中也会用到,因为会用到其中的元数据:

protected def analyzer: Analyzer = new Analyzer(catalogManager, conf) {
...
protected def optimizer: Optimizer = {
    new SparkOptimizer(catalogManager, catalog, experimentalMethods) {
      override def earlyScanPushDownRules: Seq[Rule[LogicalPlan]] =
        super.earlyScanPushDownRules ++ customEarlyScanPushDownRules
      override def extendedOperatorOptimizationRules: Seq[Rule[LogicalPlan]] =
        super.extendedOperatorOptimizationRules ++ customOperatorOptimizationRules
    }
  }

而analyzer和optimizer正是spark sql进行解析的核心中的核心,当然还有物理计划的生成。

那这些analyzer和optimizer是在哪里被调用呢?

我们举一个例子,DataSet中的filter方法就调用了:

 */
  def filter(conditionExpr: String): Dataset[T] = {
    filter(Column(sparkSession.sessionState.sqlParser.parseExpression(conditionExpr)))
  }

sessionState.sqlParser就是刚才所说的sqlParser:

protected lazy val sqlParser: ParserInterface = {
    extensions.buildParser(session, new SparkSqlParser(conf))
  }

只有整个逻辑 从sql解析到使用元数据的数据链路,我们就能大致知道怎么一回事了。

delta的DeltaCatalog


我们回过头来看看,delta的DeltaCatalog是怎么和spark 3.x进行结合的 ,上源码DeltaCatalog

class DeltaCatalog(val spark: SparkSession) extends DelegatingCatalogExtension
  with StagingTableCatalog
  with SupportsPathIdentifier {
  def this() = {
    this(SparkSession.active)
  }
  ...

就如之前所说的DeltaCatalog继承了DelegatingCatalogExtension,从名字可以看出这是一个委托类,那到底是怎么委托的呢以及委托给谁呢?

public abstract class DelegatingCatalogExtension implements CatalogExtension {
  private CatalogPlugin delegate;
  public final void setDelegateCatalog(CatalogPlugin delegate) {
    this.delegate = delegate;
  }

该类中有个setDelegateCatalog方法,该方法在CatalogManager中的loadV2SessionCatalog方法中被调用:

private def loadV2SessionCatalog(): CatalogPlugin = {
    Catalogs.load(SESSION_CATALOG_NAME, conf) match {
      case extension: CatalogExtension =>
        extension.setDelegateCatalog(defaultSessionCatalog)
        extension
      case other => other
    }
  }

而该方法被v2SessionCatalog调用:

private[sql] def v2SessionCatalog: CatalogPlugin = {
    conf.getConf(SQLConf.V2_SESSION_CATALOG_IMPLEMENTATION).map { customV2SessionCatalog =>
      try {
        catalogs.getOrElseUpdate(SESSION_CATALOG_NAME, loadV2SessionCatalog())
      } catch {
        case NonFatal(_) =>
          logError(
            "Fail to instantiate the custom v2 session catalog: " + customV2SessionCatalog)
          defaultSessionCatalog
      }
    }.getOrElse(defaultSessionCatalog)
  }

这个就是返回默认的v2版本的SessionCatalog实例,分析一下这个方法:

   首先得到配置项SQLConf.V2_SESSION_CATALOG_IMPLEMENTATION,也就是spark.sql.catalog.spark_catalog配置,
   如果spark配置了的话,就调用loadV2SessionCatalog加载该类,,否则就加载默认的v2SessionCatalog,也就是V2SessionCatalog实例

这里我们就发现了:

delta配置的spark.sql.catalog.spark_catalog为"org.apache.spark.sql.delta.catalog.DeltaCatalog",也就是说,spark中的V2SessionCatalog是DeltaCatalog的实例,而DeltaCatalog的委托给了BaseSessionStateBuilder中的V2SessionCatalog实例。


具体看看DeltaCatalog 的createTable方法,其他的方法类似:

override def createTable(
      ident: Identifier,
      schema: StructType,
      partitions: Array[Transform],
      properties: util.Map[String, String]): Table = {
    if (DeltaSourceUtils.isDeltaDataSourceName(getProvider(properties))) {
      createDeltaTable(
        ident, schema, partitions, properties, sourceQuery = None, TableCreationModes.Create)
    } else {
      super.createTable(ident, schema, partitions, properties)
    }
  }
...
private def createDeltaTable(
      ident: Identifier,
      schema: StructType,
      partitions: Array[Transform],
      properties: util.Map[String, String],
      sourceQuery: Option[LogicalPlan],
      operation: TableCreationModes.CreationMode): Table = {
     ...
    val tableDesc = new CatalogTable(
      identifier = TableIdentifier(ident.name(), ident.namespace().lastOption),
      tableType = tableType,
      storage = storage,
      schema = schema,
      provider = Some("delta"),
      partitionColumnNames = partitionColumns,
      bucketSpec = maybeBucketSpec,
      properties = tableProperties.toMap,
      comment = Option(properties.get("comment")))
    // END: copy-paste from the super method finished.
    val withDb = verifyTableAndSolidify(tableDesc, None)
    ParquetSchemaConverter.checkFieldNames(tableDesc.schema.fieldNames)
    CreateDeltaTableCommand(
      withDb,
      getExistingTableIfExists(tableDesc),
      operation.mode,
      sourceQuery,
      operation,
      tableByPath = isByPath).run(spark)
    loadTable(ident)
      }
 override def loadTable(ident: Identifier): Table = {
    try {
      super.loadTable(ident) match {
        case v1: V1Table if DeltaTableUtils.isDeltaTable(v1.catalogTable) =>
          DeltaTableV2(
            spark,
            new Path(v1.catalogTable.location),
            catalogTable = Some(v1.catalogTable),
            tableIdentifier = Some(ident.toString))
        case o => o
      }
  }

判断是否是delta数据源,如果是的话,跳到createDeltaTable方法,否则直接调用super.createTable方法,

createDeltaTable先会进行delta特有的CreateDeltaTableCommand.run()命令写入delta数据,之后载loadTable

loadTable则会调用super的loadTable,而方法会调用V2SessionCatalog的loadTable,而V2SessionCatalog最终会调用v1版本sessionCatalog的getTableMetadata方法,从而组成V1Table(catalogTable)返回,这样就把delta的元数据信息持久化到了v1 SessionCatalog管理的元数据库中

如果不是delta数据源,则调用super.createTable方法,该方法调用V2SessionCatalog的createTable,而最终还是调用v1版本sessionCatalog的createTable方法

我们这里重点分析了delta数据源到元数据的存储,非delta数据源的代码就没有粘贴过来,有兴趣的自己可以编译源码跟踪一下


我们还得提一下spark.sql.defaultCatalog的默认配置为spark_catalog,也就是sql的默认catalog为spark_catalog,对应到delta的话就是DeltaCatalog。


至此,我们就把delta为什么能够进行DDL和DML的原理结合spark的Catalog plugin API分析了一遍.其实搞懂了这些以后,自己也可以按照DeltaCatalog的方式扩展catalog,只不过是catalog的名字不要为spark_catalog,否则会出现异常信息。如果非要为spark_catalog的话,就得继承DelegatingCatalogExtension类,把所有的元数据信息委托给V2SessionCatalog


相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
203 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
106 3
|
8月前
|
定位技术
【视频】Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例-3
【视频】Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
87 1
|
8月前
|
机器学习/深度学习 缓存 算法
【视频】Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例-2
【视频】Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例
|
6月前
|
SQL 分布式计算 大数据
MaxCompute操作报错合集之 Spark Local模式启动报错,是什么原因
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
6月前
|
SQL 分布式计算 数据处理
MaxCompute操作报错合集之使用Spark查询时函数找不到的原因是什么
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
7月前
|
分布式计算 DataWorks MaxCompute
MaxCompute操作报错合集之在Spark访问OSS时出现证书错误的问题,该如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
7月前
|
分布式计算 DataWorks MaxCompute
DataWorks操作报错合集之spark操作odps,写入时报错,是什么导致的
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
8月前
|
分布式计算 DataWorks 大数据
MaxCompute操作报错合集之大数据计算的MaxCompute Spark引擎无法读取到表,是什么原因
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
MaxCompute操作报错合集之大数据计算的MaxCompute Spark引擎无法读取到表,是什么原因

热门文章

最新文章