神器 celery 源码解析 - 6

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
日志服务 SLS,月写入数据量 50GB 1个月
简介: Celery是一款非常简单、灵活、可靠的分布式系统,可用于处理大量消息,并且提供了一整套操作此系统的工具。Celery 也是一款消息队列工具,可用于处理实时数据以及任务调度。

大家好,我是肖恩,源码解析每周见


Celery是一款非常简单、灵活、可靠的分布式系统,可用于处理大量消息,并且提供了一整套操作此系统的工具。Celery 也是一款消息队列工具,可用于处理实时数据以及任务调度。


本文是是celery源码解析的第篇,在前五篇里分别介绍了:


  1. 神器 celery 源码解析- vine实现Promise功能
  2. 神器 celery 源码解析- py-amqp实现AMQP协议
  3. 神器 celery 源码解析- kombu,一个python实现的消息库
  4. 神器 celery 源码解析- kombu的企业级算法
  5. 神器 celery 源码解析- celery启动流程分析


本章我们跟着日志一起看看一次完整的任务调度流程,从另外一个角度了解启动过程中celery都做了什么。


worker模式启动流程



我们启动celery的worker, 启动大概分成3个阶段,先看第一阶段创建蓝图:


✗ celery -A myapp worker -l DEBUG
[2021-11-24 15:53:12,984: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2021-11-24 15:53:12,988: DEBUG/MainProcess] | Worker: Building graph...
[2021-11-24 15:53:12,988: DEBUG/MainProcess] | Worker: New boot order: {StateDB, Timer, Hub, Pool, Autoscaler, Beat, Consumer}
[2021-11-24 15:53:13,005: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2021-11-24 15:53:13,005: DEBUG/MainProcess] | Consumer: Building graph...
[2021-11-24 15:53:13,038: DEBUG/MainProcess] | Consumer: New boot order: {Connection, Events, Mingle, Tasks, Control, Gossip, Agent, Heart, event loop}
复制代码


这一阶段主要启动了worker和consumer2个蓝图, 下面是蓝图的创建和日志可以完整对应:


class Blueprint:
    def apply(self, parent, **kwargs):
        # 创建蓝图
        self._debug('Preparing bootsteps.')
        order = self.order = []
        steps = self.steps = self.claim_steps()
        self._debug('Building graph...')
        for S in self._finalize_steps(steps):
            step = S(parent, **kwargs)
            steps[step.name] = step
            order.append(step)
        self._debug('New boot order: {%s}',
                    ', '.join(s.alias for s in self.order))
        for step in order:
            step.include(parent)
        return self
复制代码


第一个Worker蓝图在WorkController中,包括了下面一些步骤:


class WorkController:
    class Blueprint(bootsteps.Blueprint):
    """Worker bootstep blueprint."""
    name = 'Worker'
    default_steps = {
        'celery.worker.components:Hub',
        'celery.worker.components:Pool',
        'celery.worker.components:Beat',
        'celery.worker.components:Timer',
        'celery.worker.components:StateDB',
        'celery.worker.components:Consumer',
        'celery.worker.autoscale:WorkerComponent',
    }
复制代码


第二个Consumer蓝图在Consumer中,包括了下面一些步骤:


class Consumer:
    """Consumer blueprint."""
    class Blueprint(bootsteps.Blueprint):
    """Consumer blueprint."""
    name = 'Consumer'
    default_steps = [
        'celery.worker.consumer.connection:Connection',
        'celery.worker.consumer.mingle:Mingle',
        'celery.worker.consumer.events:Events',
        'celery.worker.consumer.gossip:Gossip',
        'celery.worker.consumer.heart:Heart',
        'celery.worker.consumer.control:Control',
        'celery.worker.consumer.tasks:Tasks',
        'celery.worker.consumer.consumer:Evloop',
        'celery.worker.consumer.agent:Agent',
    ]
复制代码


创建完2个蓝图后,并没有立即启动蓝图,转而进入第二阶段创建启动worker,日志输出如下:


...
celery@192.168.5.28 v5.1.2 (sun-harmonics)
macOS-10.16-x86_64-i386-64bit 2021-11-24 11:04:09
[config]
.> app:         myapp:0x7fc898739ac0
.> transport:   redis://localhost:6379/0
.> results:     redis://localhost:6379/0
.> concurrency: 12 (prefork)
.> task events: OFF (enable -E to monitor tasks in this worker)
[queues]
.> celery           exchange=celery(direct) key=celery
[tasks]
  . celery.accumulate
  . celery.backend_cleanup
  . celery.chain
  . celery.chord
  . celery.chord_unlock
  . celery.chunks
  . celery.group
  . celery.map
  . celery.starmap
  . myapp.add
...
复制代码


这个过程app创建完成,把当前的配置信息,task列表都展示出来。 展示信息的模版:


BANNER = """\
{hostname} v{version}
{platform} {timestamp}
[config]
.> app:         {app}
.> transport:   {conninfo}
.> results:     {results}
.> concurrency: {concurrency}
.> task events: {events}
[queues]
{queues}
"""
EXTRA_INFO_FMT = """
[tasks]
{tasks}
"""
复制代码


task信息来自app的tasks,在上篇我们介绍过,其实就是TaskRegistry;并发模式默认使用的prefork,多进程模式;然后是AMQP的消费者,queue,exchange等信息:


def extra_info(self):
    if self.loglevel <= logging.INFO:
        include_builtins = self.loglevel <= logging.DEBUG
        tasklist = sep.join(
            f'  . {task}' for task in sorted(self.app.tasks)
            if (not task.startswith(int_) if not include_builtins else task)
        )
        return EXTRA_INFO_FMT.format(tasks=tasklist)
def startup_info(self, artlines=True):
    app = self.app
    concurrency = str(self.concurrency)
    appr = '{}:{:#x}'.format(app.main or '__main__', id(app))
    ...
    banner = BANNER.format(
        app=appr,
        hostname=safe_str(self.hostname),
        timestamp=datetime.now().replace(microsecond=0),
        version=VERSION_BANNER,
        conninfo=self.app.connection().as_uri(),
        results=self.app.backend.as_uri(),
        concurrency=concurrency,
        platform=safe_str(_platform.platform()),
        events=events,
        queues=app.amqp.queues.format(indent=0, indent_first=False),
    ).splitlines()
    ...
复制代码


我们可以查看celery的进程数,确认总共创建了12个进程(进程数是通过cpu核数计算出来):


➜  ~ ps -ef | grep celery
  501 72465 68316   0  3:53下午 ttys003    0:10.17 /Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/yoo/work/yuanmahui/python/.venv/bin/celery -A myapp worker -l DEBUG
  ...
  501 72479 72465   0  3:53下午 ttys003    0:00.01 /Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/yoo/work/yuanmahui/python/.venv/bin/celery -A myapp worker -l DEBUG
  501 80540 71485   0  5:33下午 ttys005    0:00.00 grep --color=auto --exclude-dir=.bzr --exclude-dir=CVS --exclude-dir=.git --exclude-dir=.hg --exclude-dir=.svn celery
复制代码


除了默认的多进程方式,celery还支持下面这些并发模式:


ALIASES = {
    'prefork': 'celery.concurrency.prefork:TaskPool',
    'eventlet': 'celery.concurrency.eventlet:TaskPool',
    'gevent': 'celery.concurrency.gevent:TaskPool',
    'solo': 'celery.concurrency.solo:TaskPool',
    'processes': 'celery.concurrency.prefork:TaskPool',  # XXX compat alias
    'threads': 'celery.concurrency.thread:TaskPool'
}
def get_implementation(cls):
    """Return pool implementation by name."""
    return symbol_by_name(cls, ALIASES)
复制代码


threads 需要concurrent.futures支持,也就是python3.2版本以上


worker启动的第3阶段就是启动蓝图,日志如下:


[2021-11-24 15:53:13,062: DEBUG/MainProcess] | Worker: Starting Hub
[2021-11-24 15:53:13,062: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:13,062: DEBUG/MainProcess] | Worker: Starting Pool
[2021-11-24 15:53:13,410: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:13,411: DEBUG/MainProcess] | Worker: Starting Consumer
[2021-11-24 15:53:13,411: DEBUG/MainProcess] | Consumer: Starting Connection
[2021-11-24 15:53:15,902: INFO/MainProcess] Connected to redis://localhost:6379/0
[2021-11-24 15:53:15,902: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:15,902: DEBUG/MainProcess] | Consumer: Starting Events
[2021-11-24 15:53:15,918: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:15,918: DEBUG/MainProcess] | Consumer: Starting Mingle
[2021-11-24 15:53:15,918: INFO/MainProcess] mingle: searching for neighbors
[2021-11-24 15:53:16,966: INFO/MainProcess] mingle: all alone
[2021-11-24 15:53:16,966: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:16,967: DEBUG/MainProcess] | Consumer: Starting Tasks
[2021-11-24 15:53:16,975: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:16,975: DEBUG/MainProcess] | Consumer: Starting Control
[2021-11-24 15:53:16,988: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:16,988: DEBUG/MainProcess] | Consumer: Starting Gossip
[2021-11-24 15:53:17,001: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:17,002: DEBUG/MainProcess] | Consumer: Starting Heart
[2021-11-24 15:53:17,008: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:17,008: DEBUG/MainProcess] | Consumer: Starting event loop
[2021-11-24 15:53:17,008: DEBUG/MainProcess] | Worker: Hub.register Pool...
[2021-11-24 15:53:17,009: INFO/MainProcess] celery@192.168.5.28 ready.
[2021-11-24 15:53:17,010: DEBUG/MainProcess] basic.qos: prefetch_count->48
复制代码


在worker启动中,我们需要关注worker蓝图的hub,pool二步(step),consumer蓝图的connection,events,mingle,task,control,gossip,heart和Evloop七步(step)。


beat模式启动流程



beat模式的启动和worker模式不一样。beat模式主要是定时处理,并且beat模式不执行具体的任务,只是负责触发定时任务。其启动日志如下:


✗ celery -A myapp beat -l DEBUG
celery beat v5.0.5 (singularity) is starting.
__    -    ... __   -        _
LocalTime -> 2021-12-05 15:40:39
Configuration ->
    . broker -> redis://localhost:6379/0
    . loader -> celery.loaders.app.AppLoader
    . scheduler -> celery.beat.PersistentScheduler
    . db -> celerybeat-schedule
    . logfile -> [stderr]@%DEBUG
    . maxinterval -> 5.00 minutes (300s)
[2021-12-05 15:40:39,639: DEBUG/MainProcess] Setting default socket timeout to 30
[2021-12-05 15:40:39,639: INFO/MainProcess] beat: Starting...
[2021-12-05 15:40:39,667: DEBUG/MainProcess] Current schedule:
<ScheduleEntry: celery.backend_cleanup celery.backend_cleanup() <crontab: 0 4 * * * (m/h/d/dM/MY)>
[2021-12-05 15:40:39,668: DEBUG/MainProcess] beat: Ticking with max interval->5.00 minutes
[2021-12-05 15:40:39,668: DEBUG/MainProcess] beat: Waking up in 5.00 minutes.
[2021-12-05 15:45:39,608: DEBUG/MainProcess] beat: Synchronizing schedule...
[2021-12-05 15:45:39,609: DEBUG/MainProcess] beat: Waking up in 5.00 minutes.
复制代码


从日志可以看到beat模式启动也大概可以分成2个阶段。第一个阶段就是创建和启动任务调度器,由beat命令提供:


class Beat:
    """Beat as a service."""
    def run(self):
        print(str(self.colored.cyan(
            f'celery beat v{VERSION_BANNER} is starting.')))
        self.init_loader()
        self.set_process_title()
        self.start_scheduler()
复制代码


第二个阶段,任务调度器开始时间循环:


# celery/beat.py
class Service:
    """Celery periodic task service."""
    scheduler_cls = PersistentScheduler
    def start(self, embedded_process=False):
        info('beat: Starting...')
        debug('beat: Ticking with max interval->%s',
              humanize_seconds(self.scheduler.max_interval))
        signals.beat_init.send(sender=self)
        if embedded_process:
            signals.beat_embedded_init.send(sender=self)
            platforms.set_process_title('celery beat')
        try:
            while not self._is_shutdown.is_set():
                interval = self.scheduler.tick()
                if interval and interval > 0.0:
                    debug('beat: Waking up %s.',
                          humanize_seconds(interval, prefix='in '))
                    time.sleep(interval)
                    if self.scheduler.should_sync():
                        self.scheduler._do_sync()
        except (KeyboardInterrupt, SystemExit):
            self._is_shutdown.set()
        finally:
            self.sync()
复制代码


这里的时间循环使用一个while循环去完成,每次tick都会检查是否有需要执行的任务,默认5分钟检查一次。


如果到达任务执行的时刻,则是通过下面的apply_async发送到worker(远程)去执行:


def apply_async(self, entry, producer=None, advance=True, **kwargs):
    # Update time-stamps and run counts before we actually execute,
    # so we have that done if an exception is raised (doesn't schedule
    # forever.)
    entry = self.reserve(entry) if advance else entry
    task = self.app.tasks.get(entry.task)
    try:
        entry_args = [v() if isinstance(v, BeatLazyFunc) else v for v in (entry.args or [])]
        entry_kwargs = {k: v() if isinstance(v, BeatLazyFunc) else v for k, v in entry.kwargs.items()}
        return task.apply_async(entry_args, entry_kwargs,
                                    producer=producer,
                                    **entry.options)
复制代码


multi模式启动流程



使用multi模式启动celery,可以让celery以服务的形式在background执行任务,并且可以启动更多的celery的执行进程。使用下面命令启动2个node ,w1和w2。


✗ celery multi start w1 w2 -A myapp -l DEBUG
celery multi v5.0.5 (singularity)
> Starting nodes...
  > w1@bogon: OK
  > w2@bogon: OK
复制代码


注意这个命令需要sudo权限


使用下面命令监测celery服务的状态。


✗ celery -A myapp status
->  w1@bogon: OK
->  w2@bogon: OK
2 nodes online.
复制代码


w1的启动流程会写入到日志,日志内容如下:


✗ cat /var/log/celery/w1.log
[2021-12-05 15:59:11,161: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2021-12-05 15:59:11,162: DEBUG/MainProcess] | Worker: Building graph...
[2021-12-05 15:59:11,163: DEBUG/MainProcess] | Worker: New boot order: {Beat, StateDB, Timer, Hub, Pool, Autoscaler, Consumer}
[2021-12-05 15:59:11,175: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2021-12-05 15:59:11,175: DEBUG/MainProcess] | Consumer: Building graph...
[2021-12-05 15:59:11,206: DEBUG/MainProcess] | Consumer: New boot order: {Connection, Events, Mingle, Tasks, Control, Agent, Gossip, Heart, event loop}
[2021-12-05 15:59:11,219: DEBUG/MainProcess] | Worker: Starting Hub
[2021-12-05 15:59:11,219: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,220: DEBUG/MainProcess] | Worker: Starting Pool
[2021-12-05 15:59:11,517: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,518: DEBUG/MainProcess] | Worker: Starting Consumer
[2021-12-05 15:59:11,518: DEBUG/MainProcess] | Consumer: Starting Connection
[2021-12-05 15:59:11,549: INFO/MainProcess] Connected to redis://localhost:6379/0
[2021-12-05 15:59:11,549: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,549: DEBUG/MainProcess] | Consumer: Starting Events
[2021-12-05 15:59:11,561: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,561: DEBUG/MainProcess] | Consumer: Starting Mingle
[2021-12-05 15:59:11,562: INFO/MainProcess] mingle: searching for neighbors
[2021-12-05 15:59:12,602: INFO/MainProcess] mingle: all alone
[2021-12-05 15:59:12,602: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,603: DEBUG/MainProcess] | Consumer: Starting Tasks
[2021-12-05 15:59:12,609: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,609: DEBUG/MainProcess] | Consumer: Starting Control
[2021-12-05 15:59:12,621: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,622: DEBUG/MainProcess] | Consumer: Starting Gossip
[2021-12-05 15:59:12,632: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,633: DEBUG/MainProcess] | Consumer: Starting Heart
[2021-12-05 15:59:12,638: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,638: DEBUG/MainProcess] | Consumer: Starting event loop
[2021-12-05 15:59:12,638: DEBUG/MainProcess] | Worker: Hub.register Pool...
[2021-12-05 15:59:12,639: INFO/MainProcess] w1@bogon ready.
[2021-12-05 15:59:12,639: DEBUG/MainProcess] basic.qos: prefetch_count->48
[2021-12-05 15:59:18,039: DEBUG/MainProcess] pidbox received method hello(from_node='w2@bogon', revoked={}) [reply_to:{'exchange': 'reply.celery.pidbox', 'routing_key': '196c0b68-a329-3e09-a1cf-54abb5e057db'} ticket:e640e757-9514-436c-8548-0ddcbe15f9a4]
[2021-12-05 15:59:18,040: INFO/MainProcess] sync with w2@bogon
[2021-12-05 15:59:19,088: DEBUG/MainProcess] w2@bogon joined the party
复制代码


w1的启动方式和worker模式基本一致,特别的地方在日志的最后部分显示w2启动完成后,w1和w2进行了互联。对应可以在w2的日志中看到w1的连接信息:


✗ cat /var/log/celery/w2.log
...
[2021-12-05 15:59:19,089: INFO/MainProcess] w2@bogon ready.
[2021-12-05 15:59:19,089: DEBUG/MainProcess] basic.qos: prefetch_count->48
[2021-12-05 15:59:20,663: DEBUG/MainProcess] w1@bogon joined the party
复制代码


所以multi模式的特点就是新增加了Cluster和Node的概念,用来管理所有的worker,主要代码如下:


@splash
@using_cluster
def start(self, cluster):
    self.note('> Starting nodes...')
    return int(any(cluster.start()))
def start(self):
    return [self.start_node(node) for node in self]
def start_node(self, node):
    maybe_call(self.on_node_start, node)
    retcode = node.start(
            self.env,
            on_spawn=self.on_child_spawn,
            on_signalled=self.on_child_signalled,
            on_failure=self.on_child_failure,
        )
    maybe_call(self.on_node_status, node, retcode)
    return retcode
复制代码


Node直接同步是在Gossip的step中:


class Gossip(bootsteps.ConsumerStep):
    ...
    def on_node_join(self, worker):
        debug('%s joined the party', worker.hostname)
        self._call_handlers(self.on.node_join, worker)
复制代码


完成测试后,可以使用命令 celery multi stop w1 w2 关闭node


worker接收任务流程



worker接收任务并执行的日志如下:


[2021-11-24 21:33:50,535: INFO/MainProcess] Received task: myapp.add[e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2]
[2021-11-24 21:33:50,535: DEBUG/MainProcess] TaskPool: Apply <function _trace_task_ret at 0x7fe6086ac280> (args:('myapp.add', 'e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2', {'lang': 'py', 'task': 'myapp.add', 'id': 'e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': 'e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2', 'parent_id': None, 'argsrepr': '(16, 16)', 'kwargsrepr': '{}', 'origin': 'gen83110@192.168.5.28', 'reply_to': '63862dbb-9d82-3bdd-b7fb-03580941362a', 'correlation_id': 'e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2', 'hostname': 'celery@192.168.5.28', 'delivery_info': {'exchange': '', 'routing_key': 'celery', 'priority': 0, 'redelivered': None}, 'args': [16, 16], 'kwargs': {}}, b'[[16, 16], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]', 'application/json', 'utf-8') kwargs:{})
[2021-11-24 21:33:50,536: DEBUG/MainProcess] Task accepted: myapp.add[e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2] pid:83086
[2021-11-24 21:33:50,537: INFO/ForkPoolWorker-8] Task myapp.add[e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2] succeeded in 0.000271957000000711s: 32
复制代码


从日志信息可以看到,主进程MainProcess收到task执行的请求,然后从任务池中获取到任务,然后调度任务到一个子进程ForkPoolWorker-9中执行。


任务的接收是在默认的策略函数中开始:


# celery/worker/strategy.py
def default(task, app, consumer,
            info=logger.info, error=logger.error, task_reserved=task_reserved,
            to_system_tz=timezone.to_system, bytes=bytes,
            proto1_to_proto2=proto1_to_proto2):
    """Default task execution strategy.
    Note:
        Strategies are here as an optimization, so sadly
        it's not very easy to override.
    """
    ...
    info('Received task: %s', req)
    ...
复制代码


任务池是由并发模型提供:


# celery/concurrency/base.py
def apply_async(self, target, args=None, kwargs=None, **options):
    """Equivalent of the :func:`apply` built-in function.
    Callbacks should optimally return as soon as possible since
    otherwise the thread which handles the result will get blocked.
    """
    kwargs = {} if not kwargs else kwargs
    args = [] if not args else args
    if self._does_debug:
        logger.debug('TaskPool: Apply %s (args:%s kwargs:%s)',
                     target, truncate(safe_repr(args), 1024),
                     truncate(safe_repr(kwargs), 1024))
    return self.on_apply(target, args, kwargs,
                         waitforslot=self.putlocks,
                         callbacks_propagate=self.callbacks_propagate,
                         **options)
复制代码


小结



我们通过对worker,beat和multi三种启动模式的日志跟踪分析,对celery的启动流程和模块功能有更进一步的了解。三个模式都需要创建app,所以启动时候通过参数-A myapp参数,由app创建/查找各种task。不同的地方首先是beat和worker/multi不同,beat实际上就是一个生产者,通过配置定时的产生任务,然后发送给worker/multi具体执行。其次不同的是worker和multi的运作方式,multi以服务方式运行,并且可以跨机器。在worker模式下,本机创建多个工作进程,是一个多进程模型。multi则是多个机器Node形成一个Cluster集群,任务在集群内部进行调度。celery的分布式模型大概可以如下图:


image.png


同时通过运行日志分析,我们可以知道celery的启动过程通过不同的Blueprint的不同Step过程实现;定时功能主要在beat和schedule模块实现;而分布式功能主要在concurrency模块,这样对各个模块的主体功能分工会有更清晰的认知。



目录
相关文章
|
26天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
26天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
26天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2天前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
8 0
|
2月前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
65 12
|
1月前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
27天前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
108 2
|
3月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
93 0
|
3月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
77 0

热门文章

最新文章

推荐镜像

更多