复购分析实战 | Pandas遇到了大难题..(附40000+数据源和代码)(上)

简介: 在电商等消费场景下,复购率是最耳熟能详的指标之一了。上到平台、下到品牌、店铺,各种复盘分析一定绕不开复购率,今天我们就从实战的角度聊聊复购率。本文是Pandas实战系列的番外篇,是小z特意总结的案例,对于pandas操作是一个很大的考验。

初识复购率


实际业务经常会遇到以下场景:


“哈,我们的复购率同比/环比提升了XXX!”台下一片欣然..


“哎,近XX时间复购率有明显下降趋势”Boss脸色变得难看...


小z发现,复购率的讨论很容易陷入鸡同鸭讲,明面上都在说复购率,但实际连指标计算逻辑都是不同的:


  • 有留存角度的,A时间段购买人数,在其后B时间段重复购买人数占比
  • 有客户生命周期角度的,A时间段购买人数,在整个生命周期中,重复购买人数占比
  • 有截断角度的,A时间(这个时间一般比较长)段购买人数,在A时间段重复购买人数的占比
  • 还有自定义角度的....


各种眼花缭乱的复购计算方法,及其延伸的复购分析体系,以后会详细展开讲解。这次,我们先以一种计算逻辑切入,搞清楚如何用Pandas计算客户复购率。


复购率计算


本文采用一种比较简单,但非常考验Pandas技巧的口径来定义(可能是一些同学用pandas遇到的最大挑战)


复购率:一段时期内,购买两次及以上的客户占总人数的比重


比如最近半年,有10000个客户购买我们的产品,在这半年内,有1000个客户重复购买(购买2次及以上),那半年期复购率就是1000 / 10000 = 10%


有同学会说“订单去重之后,按照客户ID来groupby一下不就行了,有啥好讲的!”


Too young too simple~


一般拿到的订单是产品维度的,像这样:


image.png

一个客户同时购买了A、B、C三款产品,后台会生成三笔产品订单,如果直接按照ID来分组统计,这种连带性质的订单都会被统计,结果指标一定非常浮夸。


“那按照日期和买家ID来去重,把当天购买的行为归为一次,再按照ID来分组统计呗”


在一些场景中,这是相对简单的计算方法,但还是不够严谨,也没有充分触达到复购的本质。


这种计算方式很容易受到特定活动和特殊产品的影响:


  • 比如品牌在活动期连续三天搞大型秒杀活动,很多客户连续三天参与购买,这个口径下的复购率会大大注水。
  • 比如大促期间消费者抢购一波,结果第二天发现还想购买配套产品..


对于复购的分析,我们真正在意的是客户正常的消耗周期,比如一款脱毛膏,就算全身上下涂个遍,也够用15天,那A客户1号首次购买,在3号又来购买,严格意义上是不算复购的,只能算第一次购买的补充(连带购买)


我们应该根据业务实际情况制定一个规则,即客户前后购买行为间隔超过多少天,算作复购。


下面的实战场景中,这个值定义为2:即客户后一次和前一次购买时间间隔必须大于2天,才算复购行为。


举个栗子


概念晦涩,栗子清晰:


image.png


某客户,第一次购买时间是5月1日,随后5月2日又产生了购买行为,这里间隔时间只有1天,所以不算复购。


顺延下一次购买时间,5月3日和5月1日的间隔正好是2天,不满足我们大于2天算复购的定义,也不能算复购。


时间继续朝后推,5月6日和5月1日时间差整整有5天,这次购买间隔符合复购定义。记作该客户第一次复购,于是5月6日变成了新的锚点,以对比计算后续购买行为的时间差。


客户最后一次购买行为发生于5月9日,和最近的锚点5月6日有3天的间隔,亦满足我们对复购的定义,因此最后一次消费也算作复购。


总的来说,客户在5月1日-5月3日是一次购买行为,在5月6日的消费是第二次购买行为,5月9日则是第三次购买行为,整体复购了两次。


Pandas看了这个计算逻辑,感觉遇到了严峻的挑战....

相关文章
|
2月前
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
61 1
|
23天前
|
分布式计算 数据可视化 大数据
Vaex :突破pandas,快速分析100GB大数据集
Vaex :突破pandas,快速分析100GB大数据集
|
23天前
|
存储 数据挖掘 API
多快好省地使用pandas分析大型数据集
多快好省地使用pandas分析大型数据集
|
29天前
|
数据采集 数据挖掘 数据处理
解锁Python数据分析新技能!Pandas实战学习,让你的数据处理能力瞬间飙升!
【8月更文挑战第22天】Python中的Pandas库简化了数据分析工作。本文通过分析一个金融公司的投资数据文件“investment_data.csv”,介绍了Pandas的基础及高级功能。首先读取并检查数据,包括显示前几行、列名、形状和数据类型。随后进行数据清洗,移除缺失值与重复项。接着转换日期格式,并计算投资收益。最后通过分组计算平均投资回报率,展示了Pandas在数据处理与分析中的强大能力。
31 0
|
2月前
|
数据采集 机器学习/深度学习 数据处理
从基础到卓越:Pandas与NumPy在复杂数据处理中的实战策略
【7月更文挑战第14天】Pandas与NumPy在数据科学中的核心应用:**加载数据(如`read_csv`)、探索(`head()`, `info()`, `describe()`)、数据清洗(`fillna`, `dropna`, `replace`, `apply`)、数值计算(借助NumPy的`ndarray`)、分组聚合(`groupby`与聚合函数)、窗口函数(如`rolling`)和数据筛选排序(布尔索引,`query`,`sort_values`)。通过这些工具,实现从数据预处理到复杂分析的高效处理。
37 0
|
2月前
|
数据采集 机器学习/深度学习 数据处理
数据科学家的秘密武器:Pandas与NumPy高级应用实战指南
【7月更文挑战第14天】Pandas与NumPy在数据科学中扮演关键角色。Pandas的DataFrame和Series提供高效数据处理,如数据清洗、转换,而NumPy则以ndarray为基础进行数值计算和矩阵操作。两者结合,从数据预处理到数值分析,形成强大工具组合。示例展示了填充缺失值、类型转换、矩阵乘法、标准化等操作,体现其在实际项目中的协同效用。掌握这两者,能提升数据科学家的效能和分析深度。**
29 0
|
2月前
|
数据处理 Python
数据科学进阶之路:Pandas与NumPy高级操作详解与实战演练
【7月更文挑战第13天】探索数据科学:Pandas与NumPy提升效率的高级技巧** - Pandas的`query`, `loc`和`groupby`用于复杂筛选和分组聚合,例如筛选2023年销售额超1000的记录并按类别计总销售额。 - NumPy的广播和向量化运算加速大规模数据处理,如快速计算两个大数组的元素级乘积。 - Pandas DataFrame基于NumPy,二者协同加速数据处理,如将DataFrame列转换为NumPy数组进行标准化再回写,避免链式赋值。 掌握这些高级操作,实现数据科学项目的效率飞跃。
44 0
|
3月前
|
数据采集 存储 数据可视化
Pandas高级教程:数据清洗、转换与分析
Pandas是Python的数据分析库,提供Series和DataFrame数据结构及数据分析工具,便于数据清洗、转换和分析。本教程涵盖Pandas在数据清洗(如缺失值、重复值和异常值处理)、转换(数据类型转换和重塑)和分析(如描述性统计、分组聚合和可视化)的应用。通过学习Pandas,用户能更高效地处理和理解数据,为数据分析任务打下基础。
229 3
|
4月前
|
数据采集 SQL 数据处理
Python中的Pandas库:数据处理与分析的利器
Python中的Pandas库:数据处理与分析的利器
74 0