Python网络数据抓取(5):Pandas

简介: Python网络数据抓取(5):Pandas

Pandas

Pandas 是一个 Python 库,它提供灵活的数据结构,使我们与数据的交互变得非常容易。我们将使用它将数据保存在 CSV 文件中。

obj={
   
   }

arr=[]

obj[“name”] = soup.find(“span”,{
   
   class:”a-size-large product-title-word-break}).text.lstrip()

obj[“price”] = soup.find(“span”,{
   
   class:”priceToPay”}).find(“span”,{
   
   class:”a-offscreen”}).text

obj[“rating”] = soup.find(“i”,{
   
   class:”a-icon-star”}).text.split(“ “)[0]

arr.append(obj)

首先,我们声明了一个对象和一个数组。然后我们将所有目标数据存储在该对象中。然后我们将这个对象放入一个数组中。现在,我们将使用 pandas 和该数组创建一个数据框,然后使用该数据框创建 CSV 文件。

df = pd.DataFrame(arr)
df.to_csv(‘amazon_data.csv’, index=False, encoding=’utf-8')

这将在您的文件夹中创建一个名为 amazon_data.csv 的 CSV 文件。

Pandas 让我们的工作变得容易多了。使用这种技术,您可以抓取任何规模的亚马逊页面。

import requests
from bs4 import BeautifulSoup
import pandas as pd

obj={
   
   }
arr=[]

url = “https://www.amazon.com/dp/B08WVVBWCN"

headers = {
   
   “User-Agent”:”Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36"}

resp = requests.get(url, headers=headers)
print(resp.status_code)
soup=BeautifulSoup(resp.text,’html.parser’)

obj[“name”] = soup.find(“span”,{
   
   class:”a-size-large product-title-word-break}).text.lstrip()

obj[“price”] = soup.find(“span”,{
   
   class:”priceToPay”}).find(“span”,{
   
   class:”a-offscreen”}).text

obj[“rating”] = soup.find(“i”,{
   
   class:”a-icon-star”}).text.split(“ “)[0]

arr.append(obj)
df = pd.DataFrame(arr)
df.to_csv(‘amazon_data.csv’, index=False, encoding=’utf-8')

print(arr)

总结

正如你所观察到的,Requests、BeautifulSoup(BS4)和pandas库极大地简化了我们从亚马逊网站提取数据的过程。显而易见,如果你打算利用requests库来批量抓取亚马逊的数百万页面,那么你需要处理好多事项,包括设置合适的请求头、进行代理服务器的轮换以及处理验证码问题。

然而,如果你选择使用其他框架(Scrapy)提供的网页抓取API服务,那么你就无需亲自处理这些繁琐的步骤。其他框架(Scrapy)会利用其庞大的代理和请求头资源库来高效地完成对亚马逊网站的抓取任务。

值得一提的是,数据抓取工具的应用范围并不局限于亚马逊,它能够抓取任何网站的数据,哪怕是那些需要JavaScript渲染的复杂网站。

相关文章
|
26天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
27天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
53 2
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
87 6
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
66 0
|
14天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
37 8
|
21天前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
22天前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
23天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
71 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
28天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
52 3
|
29天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
40 2