【新手解答】Python中Pandas的初学者笔记

简介: 【新手解答】Python中Pandas的初学者笔记

写在最前面

一位CSDN好友询问是否有python里的pandas库的笔记,在我的蓝桥杯专栏(点击可直接跳转)中有部分涉及pandas库的笔记,但是没有系统整合,于是新写一篇博客简单梳理一下。

在这篇博客中,我们将深入浅出地介绍Python中的Pandas库,旨在帮助初学者快速上手并有效地利用这个强大的数据处理工具。

Python与Pandas简介

Python 是一种高级编程语言,以其简洁的语法和强大的功能而闻名。它在数据科学、机器学习、网络开发等多个领域都有广泛应用。

Pandas 是一个开源的Python库,专为数据分析提供高性能的数据结构和数据分析工具。对于希望在Python中处理、分析数据的初学者而言,Pandas是一个不可或缺的工具。

安装Pandas

Pandas安装步骤

一旦Python安装完成,可以通过Python的包管理器pip来安装Pandas。打开命令行或终端,输入以下命令即可:

pip install pandas

Pandas基础:DataFrame与Series

DataFrame介绍

DataFrame是Pandas中最常用的数据结构,类似于Excel中的表格,或是SQL数据库中的表。它是一个二维的、大小可变的、异质性的表格数据结构,带有轴标签(行标签和列标签)。

import pandas as pd

# 创建一个DataFrame示例
data = {'Name': ['John', 'Anna', 'Peter', 'Linda'],
        'Age': [28, 34, 29, 40],
        'City': ['New York', 'Paris', 'Berlin', 'London']}
df = pd.DataFrame(data)
print(df)

Series介绍

Series是Pandas中另一个核心数据结构,可以被认为是一个一维的数组。与普通的Python列表不同,Series可以有一个索引,该索引可以是整数型或标签型(例如时间序列)。

# 创建一个Series示例
ages = pd.Series([28, 34, 29, 40], name="Age")
print(ages)

数据导入与导出

读取CSV文件

Pandas使得读取文件(如CSV文件)变得非常简单。以下是如何读取CSV文件的示例代码。

# 读取CSV文件
df = pd.read_csv('path/to/your/csv/file.csv')
print(df.head())

写入CSV文件

同样,Pandas也可以轻松地将DataFrame写入CSV文件。

# 写入CSV文件
df.to_csv('path/to/your/new/csv/file.csv', index=False)

数据清洗与预处理

缺失值处理

处理数据集中的缺失值是数据预处理的重要步骤。Pandas提供了多种方法来处理缺失值。

# 处理缺失值:填充与删除
df.fillna(0, inplace=True) # 用0填充缺失值
df.dropna(inplace=True) # 删除含有缺失值的行

数据筛选与过滤

Pandas提供了灵活的方法来筛选满足特定条件的数据。

# 数据筛选
young_people = df[df['Age'] < 30]
print(young_people)

数据探索与分析

基本统计

Pandas支持各种统计方法,帮助我们快速理解数据的基本特性。

# 基本统计
print(df.describe())

分组与聚合

分组(Grouping)和聚合(Aggregating)是数据分析中的强大工具,允许我们按照某个或某些特定的列来组织数据,并进行统计分析。

# 分组与聚合
grouped = df.groupby('City')
print(grouped.mean())

数据可视化入门

利用Matplotlib集成进行数据可视化

Pandas与Matplotlib紧密集成,支持直接从DataFrame和Series进行绘图。

import matplotlib.pyplot as plt

# 数据可视化示例
df.plot(kind='bar', x='Name', y='Age')
plt.show()

基本图表绘制

在数据分析中,图表是理解数据的重要工具之一。通过可视化,我们可以直观地看到数据的模式、趋势和异常值。Pandas提供了简单而强大的绘图功能,大部分是建立在Matplotlib库之上的。这意味着

你可以用很少的代码来生成各种类型的图表。以下是一些基本图表的绘制方法,将帮助你更好地理解你的数据。

折线图

折线图非常适合展示数据随时间变化的趋势。如果你正在处理时间序列数据,折线图应该是你的首选。

import pandas as pd
import matplotlib.pyplot as plt

# 创建数据
data = pd.Series([1, 3, 2, 4, 6, 8, 7, 9], index=pd.date_range('20200101', periods=8))

# 绘制折线图
data.plot()
plt.title('Time Series Plot')
plt.xlabel('Date')
plt.ylabel('Value')
plt.show()
柱状图

柱状图是表示类别数据对比情况的理想选择。它可以帮助我们比较不同类别或时间点的数据量。

# 创建数据
data = pd.DataFrame({'A': [1, 2, 3], 'B': [3, 2, 1]}, index=['X', 'Y', 'Z'])

# 绘制柱状图
data.plot(kind='bar')
plt.title('Bar Chart')
plt.xlabel('Category')
plt.ylabel('Value')
plt.legend(title='Type')
plt.show()
散点图

散点图用于展示两个变量之间的关系,是寻找变量间相互作用的有力工具。

# 创建数据
df = pd.DataFrame({
    'X': range(1, 6),
    'Y': [1,4,6,8,4]
})

# 绘制散点图
df.plot(kind='scatter', x='X', y='Y')
plt.title('Scatter Plot')
plt.xlabel('X Value')
plt.ylabel('Y Value')
plt.show()
直方图

直方图是理解数据分布的重要工具,特别是当你想要知道数据的集中趋势和分散程度时。

# 创建数据
data = pd.Series([1, 2, 2, 3, 4, 4, 4, 5, 6])

# 绘制直方图
data.plot(kind='hist', bins=5)
plt.title('Histogram')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.show()

通过上述示例,我们可以看到,Pandas和Matplotlib的结合使用可以非常便捷地绘制各种类型的图表。掌握这些基础图表绘制技巧对于数据分析是非常有帮助的,可以让你从不同角度理解数据。继续实践和探索,你将能够发现数据背后更深层次的信息。

高级Pandas技巧

数据合并与重塑

Pandas提供了多种方法来合并、连接和重塑数据集。

# 数据合并示例
pd.merge(df1, df2, on='key')

时间序列数据处理

Pandas在处理时间序列数据方面也非常强大,支持时间索引和重采样等操作。

# 时间序列数据处理
timeseries = pd.date_range('2020-01-01', periods=6, freq='D')
df = pd.DataFrame(index=timeseries, data={'Value': [1, 2, 3, 4, 5, 6]})
df.resample('M').mean()

通过本篇笔记,希望能帮助你对Pandas有一个初步的了解,通过实践来进一步掌握这个强大的工具。

目录
相关文章
|
2月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
104 0
|
10天前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
20 2
|
2月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
58 2
|
2月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
68 2
|
2月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
2月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
8月前
|
数据处理 Python
如何使用Python的Pandas库进行数据排序和排名
【4月更文挑战第22天】Pandas Python库提供数据排序和排名功能。使用`sort_values()`按列进行升序或降序排序,如`df.sort_values(by=&#39;A&#39;, ascending=False)`。`rank()`函数用于计算排名,如`df[&#39;A&#39;].rank(ascending=False)`。多列操作可传入列名列表,如`df.sort_values(by=[&#39;A&#39;, &#39;B&#39;], ascending=[True, False])`和分别对&#39;A&#39;、&#39;B&#39;列排名。
120 2