轻松入门学习大数据

简介: 学到第五期感觉难度也大了很多,也对之前的学习有一个认知上的提升,感觉自己也强了很多!

通过阿里的一步一步的带领,学习了大数据知识,非常开心!

登录EMR集群终端。

  1. 在远程桌面中点击Firefox ESR,会自动弹出分配子账号的登录页面,点击下一步,从左侧复制子用户密码,粘贴(温馨提示:粘贴快捷键为CTRL+V)到输入框
  1. 登录成功后进入阿里云控制台首页,点击左侧菜单,输入关键词“emr”,点击 E-MapReduce 进入管理页面。

3.在E-MapReduce控制台页面上方,选择资源所在地域。例如下图中,地域切换为华东2(上海)。

说明:您可以在云产品资源列表中查看到您的E-MapReduce资源所在地域。

4.在E-MapReduce控制台页面的集群列表区域,单击您的集群名/ID。

说明:您可以在云产品资源列表中查看到您的E-MapReduce集群名/ID。

5.集群基础信息页面的主机信息区域,复制MASTER的节点的公网ip地址。

  1. 打开远程桌面终端LxShell
  1. 在终端中输入连接命令ssh root@[ipaddress]。您需要将[ipaddress]替换成第3步中复制公网地址,例如:

ssh root@139.xxx.xxx.230
命令显示结果如下:

  1. 输入 yes。
  2. 同意继续后将会提示输入登录密码。密码为 @Aliyun2021 (你可以使用粘贴快捷键SHIFT+CTRL+V)。

说明:输入密码的过程中没有回显,请确保键入内容正确。

登录成功后会显示如下信息。

本步骤将指导您如何将自建数据上传到HDFS。

  1. 执行如下命令,创建HDFS目录。

说明:在LX终端中,粘贴快捷键为SHIFT+CTRL+V。

hdfs dfs -mkdir -p /data/student

  1. 上传文件到hadoop文件系统。

a.执行如下命令,创建u.txt文件。

创建u.txt文件

vim u.txt
b.按 "i" 键进入编辑模式,通过粘贴快捷键(SHIFT+CTRL+V)将下方内容复制到文件中,按"Esc"返回命令模式,输入":wq"保存

说明:第一列表示userid,第二列表示movieid,第三列表示rating,第四列表示unixtime。

196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
166 346 1 886397596
298 474 4 884182806
115 265 2 881171488
253 465 5 891628467
305 451 3 886324817
6 86 3 883603013
62 257 2 879372434
286 1014 5 879781125
200 222 5 876042340
210 40 3 891035994
224 29 3 888104457
303 785 3 879485318
122 387 5 879270459
194 274 2 879539794
291 1042 4 874834944
234 1184 2 892079237
119 392 4 886176814
167 486 4 892738452
299 144 4 877881320
291 118 2 874833878
308 1 4 887736532
95 546 2 879196566
38 95 5 892430094
102 768 2 883748450
63 277 4 875747401
160 234 5 876861185
50 246 3 877052329
301 98 4 882075827
225 193 4 879539727
290 88 4 880731963
97 194 3 884238860
157 274 4 886890835
181 1081 1 878962623
278 603 5 891295330
276 796 1 874791932
7 32 4 891350932
10 16 4 877888877
284 304 4 885329322
201 979 2 884114233
276 564 3 874791805
287 327 5 875333916
246 201 5 884921594
242 1137 5 879741196
249 241 5 879641194
99 4 5 886519097
178 332 3 882823437
251 100 4 886271884
81 432 2 876535131
260 322 4 890618898
25 181 5 885853415
59 196 5 888205088
72 679 2 880037164
87 384 4 879877127
290 143 5 880474293
42 423 5 881107687
292 515 4 881103977
115 20 3 881171009
20 288 1 879667584
201 219 4 884112673
13 526 3 882141053
246 919 4 884920949
138 26 5 879024232
167 232 1 892738341
60 427 5 883326620
57 304 5 883698581
223 274 4 891550094
189 512 4 893277702
243 15 3 879987440
92 1049 1 890251826
246 416 3 884923047
194 165 4 879546723
241 690 2 887249482
178 248 4 882823954
254 1444 3 886475558
293 5 3 888906576
127 229 5 884364867
225 237 5 879539643
299 229 3 878192429
225 480 5 879540748
276 54 3 874791025
291 144 5 874835091
222 366 4 878183381
267 518 5 878971773
42 403 3 881108684
11 111 4 891903862
95 625 4 888954412
8 338 4 879361873
162 25 4 877635573
87 1016 4 879876194
279 154 5 875296291
145 275 2 885557505
119 1153 5 874781198
62 498 4 879373848
62 382 3 879375537
28 209 4 881961214
135 23 4 879857765
32 294 3 883709863
90 382 5 891383835
286 208 4 877531942
293 685 3 888905170
216 144 4 880234639
166 328 5 886397722
c. 上传文件u.txt到hadoop文件系统。

hdfs dfs -put u.txt /data/student

  1. 查看文件。

hdfs dfs -ls /data/student

  1. 使用hive创建表

本步骤将指导您如何使用hive创建数据表,并使用hadoop文件系统中的数据加载到hive数据表中。

  1. 执行如下命令,登录hive数据库。

hive

  1. 创建user表。

CREATE TABLE emrusers (
userid INT,
movieid INT,
rating INT,
unixtime STRING )
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
;

  1. 执行如下命令,从hadoop文件系统加载数据到hive数据表。

    LOAD DATA INPATH '/data/student/u.txt' INTO TABLE emrusers;

本步骤将指导您如何使用hive对数据表进行查询等操作。

  1. 查看5行表数据。

select * from emrusers limit 5;

  1. 查询数据表中有多少条数据。

select count(*) from emrusers;
返回结果如下,您可以看到您数据表中一共有多少数据,

  1. 查询数据表中评级最高的三个电影。

select movieid,sum(rating) as rat from emrusers group by movieid order by rat desc limit 3;
返回结果如下,您可以看到您数据表中评级最高的三个电影。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
5月前
|
数据采集 分布式计算 大数据
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
148 1
|
4月前
|
SQL 分布式计算 大数据
SparkSQL 入门指南:小白也能懂的大数据 SQL 处理神器
在大数据处理的领域,SparkSQL 是一种非常强大的工具,它可以让开发人员以 SQL 的方式处理和查询大规模数据集。SparkSQL 集成了 SQL 查询引擎和 Spark 的分布式计算引擎,使得我们可以在分布式环境下执行 SQL 查询,并能利用 Spark 的强大计算能力进行数据分析。
|
6月前
|
数据采集 搜索推荐 算法
Java 大视界 -- Java 大数据在智能教育学习社区用户互动分析与社区活跃度提升中的应用(274)
本文系统阐述 Java 大数据技术在智能教育学习社区中的深度应用,涵盖数据采集架构、核心分析算法、活跃度提升策略及前沿技术探索,为教育数字化转型提供完整技术解决方案。
|
8月前
|
数据采集 数据可视化 大数据
Python入门修炼:开启你在大数据世界的第一个脚本
Python入门修炼:开启你在大数据世界的第一个脚本
179 6
|
数据采集 数据可视化 大数据
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
这篇文章介绍了如何使用Python中的matplotlib和numpy库来创建箱线图,以检测和处理数据集中的异常值。
361 1
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
|
存储 SQL 分布式计算
大数据学习
【10月更文挑战第15天】
328 1
|
分布式计算 大数据 Linux
大数据体系知识学习(二):WordCount案例实现及错误总结
这篇文章介绍了如何使用PySpark进行WordCount操作,包括环境配置、代码实现、运行结果和遇到的错误。作者在运行过程中遇到了Py4JJavaError和JAVA_HOME未设置的问题,并通过导入findspark初始化和设置环境变量解决了这些问题。文章还讨论了groupByKey和reduceByKey的区别。
234 1
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
467 1
|
3月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
300 14
|
4月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
180 0