阿里云PAI Studio Python脚本组件使用Quick Start

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
对象存储 OSS,20GB 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: PAI-Studio提供自定义Python脚本的功能,您可以使用该组件运行自定义的Python函数,并且支持自定义安装依赖包。本文为您介绍该组件的配置详情,包括自定义输入输出桩数量、脚本设置及执行配置。本文通过使用Python脚本读取ODPS上游表,演示Python脚本组件的使用。

Step By Step

1、界面组件拖拽与配置
2、Python 组件相关配置
3、运行测试
4、日志查看


一、界面组件拖拽与配置

图片.png

  • 1.2 分别拖拽读数据表组件和Python脚本组件到画布

图片.png

二、组件相关配置

图片.png

脚本:
CREATE TABLE `lm_test_input_1` (
    `value` bigint,
    `output1` bigint
);

INSERT into table lm_test_input_1 values (1,2);

INSERT into table lm_test_input_1 values (2,4);

SELECT * FROM lm_test_input_1;
  • 2.2 配置读数据表组件

图片.png

  • 2.3 配置Python脚本组件

图片.png

main.py

from odps import ODPS
from pai_running.context import Context

context = Context()

# 获取组件第一个输入端口输入数据
input_port = context.input_artifacts.flatten()[0]
print("---input_port---",input_port)
print("---日志输出测试:---")

o = ODPS(
    access_id=context.access_key_id,
    secret_access_key=context.access_key_secret,
    endpoint=input_port.endpoint,
    project=input_port.project,
)

# 获取从上游输入的表名
input_table_name = input_port.table
print("---input_table_name---",input_table_name)
# 组件准备输出的表
output_table_name = "demo_output_table"

o.execute_sql(
    f"drop table if exists {output_table_name};",
)

# 获取输入表的age列,导出到一张新表中
o.execute_sql(
    f"create table {output_table_name} as select value from {input_table_name};"
)

# 通过以下调用,告知Workflow框架,当前组件输出了一张ODPS表
output_port = context.output_artifacts.flatten()[0]
output_port.write_table(
    table="demo_output_table",
    project=o.project,
    endpoint=o.endpoint,
)
执行配置脚本
{
    "_comments": [
        "Python 组件将用户代码运行在公共资源组的 DLC 集群 (https://help.aliyun.com/document_detail/202277.html)",
        "并且支持数据加载/保存本地文件系统,用户可以通过读写本地文件的方式,读写上下游的输入输出数据。",
        "目前运行的任务通过一个 JSON 文件进行配置,从功能角度,配置项主要包括两部分内容",
        "1. 数据载入/保存配置",
        "1.1. inputDataTunnel: 每一项对应组件的一个输入端口, 将上游节点的输入数据(MaxComputeTable, OSS) 加载到本地目录中;",
        "1.2. outputDataTunnel: 每一项对应组件的一个输出端口,指定将哪些本地文件上传保存到 OSS 中;",
        "1.3. uploadConfig: 数据上传的OSS配置, 包括上传的OSS bucket 名称, endpoint,以及上传到OSS的根路径 path;",
        "2. 运行负载配置(jobConfig),包含运行在 ServerLess DLC 的具体运行配置;",
        "注意: 以下的配置项是一个样例说明,请根据实际组件运行的场景修改使用。",
        "注意: 用户的代码执行的日志输出,可以通过点击组件输出的 DLC 的任务URL,去DLC的控制台查看"
    ],
    "inputDataTunnel": [
    ],
    "outputDataTunnel": [
    ],
    "uploadConfig": {
        "endpoint": "oss-<oss bucket region>.aliyuncs.com",
        "bucket": "<oss bucket name>",
        "path": "python_example/",
        "_comments": [
            "数据上传配置项, 目前数据上传功能只支持上传到 OSS。",
            "如果单独的 outputDataTunnel 中没有数据上传配置(没有.uploadConfig 字段),则会使用全局的uploadDataTunnelConfig配置",
            "note:每一个DataTunnel 指定的文件/目录,最终的上传的路径为 uploadConfig.path/{run_id}/{node_id}/{output_tunnel_name}/"
        ]
    },
    "jobConfig": {
        "name": "example1",
        "jobType": "generalJob",
        "taskSpec": {
            "instanceType": "ecs.c6.large",
            "imageUri": "registry.cn-hangzhou.aliyuncs.com/paiflow-public/python3:v1.0.0"
        },
        "_comments": [
            "DLC的任务配置项,包括",
            "name: 运行在 DLC 的任务名称前缀",
            "jobType: 任务类型,目前默认为GeneralJob,无需修改,表示是一个单节点任务(后续会支持多节点的分布式任务)",
            "taskSpec: 任务worker节点配置,其中 .instanceType 表示worker使用的 ECS 实例类型; .imageUri 是worker使用的镜像",
            "目前worker 支持使用官方镜像 (https://help.aliyun.com/document_detail/202834.htm) ,以及自定义镜像, 如果使用自定义镜像,请确保镜像能够支持公开访问。"
        ]
    }
}
三、运行测试

图片.png

图片.png

四、日志查看

图片.png

由于Python脚本需要依赖于PAI-DLC作为底层计算引擎,实际是在DLC集群创建docker运行的,所以查看Python脚本的详细日志需要到DLC控制台查看。

图片.png

图片.png

更多参考

Python脚本

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
25天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
68 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
27天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
42 2
|
29天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
52 1
|
29天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
77 1
|
1月前
|
机器学习/深度学习 自然语言处理 API
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程。通过简单的代码示例,展示如何将文本转换为自然流畅的语音,适用于有声阅读、智能客服等场景。
132 3
|
1月前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
40 3
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
34 1
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
24 1
|
2月前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
31 2