Facebook&哥大等推出实验性AI框架,音视频信息可自由转换文本!

简介: 近日,来自Facebook、哥伦比亚大学等高校的研究人员开发了一种可以从视频、对话历史、音频以及语音文本中生成高层次语义信息的框架——Vx2Text,该模型可以用来概括信息内容,并准确地回答相关问题。

微信图片_20220112150448.jpg


对于人工智能来说,开发一个能可靠地理解世界、并使用自然语言作出反应的对话系统是一个很大的挑战。

 

如果要达到这一目标,那么我们需要一个能够从图像、文本、音频和视频中提取突出信息,并以人类能够理解的方式回答问题的模型。

 

最近,Facebook、哥伦比亚大学、佐治亚理工学院和达特茅斯大学的研究人员开发了Vx2Text——一个从视频、语音或者音频中生成文本的框架。他们声称,相比之前的最先进的方法,Vx2Text可以更好地创建说明文字并回答问题


微信图片_20220112150456.png


论文地址:

https://arxiv.org/pdf/2101.12059.pdf

 

与大多数人工智能系统不同,人类可以很自然地轻易理解文本、视频、音频和图像在上下文语境中的含义:

 

例如,一些给定的文本和图像,在分开讨论的时候似乎无害,比如“看看有多少人爱你”和一张贫瘠沙漠的图片,然而,人们会立即意识到,这些元素在结合在一起的时候,其实是具有潜在伤害性的。

 

多模态学习可以包含一些潜在互补的信息或者趋势,不过,只有在学习中完全包含相关信息的时候,这些含义才能显现。

 

对于Vx2Text,,“模态独立“的分类器将来自视频、文本或音频的语义信号,转换为公共语义语言空间,这使得语言模型能够直接解释多模态数据,从而为通过谷歌的T5等强大的语言模型进行多模态融合——即结合信号来支持分类——提供了可能。


微信图片_20220112150458.png


图:模型框架


Vx2Text中的生成式文本解码器,将编码器计算的多模态特征转换为文本,使该框架适合于生成自然语言语义概括,如下图:


微信图片_20220112150500.png


研究人员在论文中写道:“与之前的方法相比,这种设计不仅简单得多,而且具有更好的性能。”

 

更有用的是,它并不需要设计专门的算法,或者借鉴其他替代方法来实现多模态信息的组合

 

在实验中,研究人员展示了Vx2Text为带有视频和音频的视频场景所生成的「真实的」自然文本。

 

尽管研究人员研究人员以对话历史和语音记录的形式,为模型提供了上下文,但是他们注意到,生成的文本包括了非文本形式的信息,例如帮助某人帮助某人站起来或者接电话等行为。


微信图片_20220112150501.png


此外,由于Vx2Text可以高度整合、概括和真正理解多模态输入中蕴含的信息,因此,基于生成的语义信息,它也可以回答各种各样的问题:


微信图片_20220112150503.png


Vx2Text可以用于工业界,比如,它可以用于为流媒体视频添加标题来增加访问性。

 

此外,这个框架也可能会用于YouTube和Vimeo等视频分享平台——这些平台依赖字幕和其他信息来提高搜索结果的相关性。

 

研究人员表示:“我们的方法从将所有形式的信息映射到语义语言空间的想法出发,来实现直接应用强大语言模型——Transformer网络的目标,这使得我们的整个模型都可以进行端到端的训练。“

 

参考链接:


https://venturebeat.com/2021/02/02/researchers-vx2text-ai-framework-draws-inferences-from-videos-audio-and-text-to-generate-captions/


相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
探索AI技术在文本生成中的应用与挑战
【9月更文挑战第26天】本文深入探讨了AI技术在文本生成领域的应用,并分析了其面临的挑战。通过介绍AI文本生成的基本原理、应用场景以及未来发展趋势,帮助读者全面了解该技术的潜力和局限性。同时,文章还提供了代码示例,展示了如何使用Python和相关库实现简单的文本生成模型。
84 9
|
18天前
|
人工智能 安全 决策智能
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
|
12天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
84 6
|
11天前
|
人工智能 自然语言处理 监控
AI技术在文本情感分析中的应用
【10月更文挑战第22天】本文将探讨人工智能(AI)如何改变我们对文本情感分析的理解和应用。我们将通过实际的代码示例,深入了解AI如何帮助我们识别和理解文本中的情感。无论你是AI新手还是有经验的开发者,这篇文章都将为你提供有价值的信息。让我们一起探索AI的奇妙世界吧!
32 3
|
20天前
|
人工智能 开发框架 Java
总计 30 万奖金,Spring AI Alibaba 应用框架挑战赛开赛
Spring AI Alibaba 应用框架挑战赛邀请广大开发者参与开源项目的共建,助力项目快速发展,掌握 AI 应用开发模式。大赛分为《支持 Spring AI Alibaba 应用可视化调试与追踪本地工具》和《基于 Flow 的 AI 编排机制设计与实现》两个赛道,总计 30 万奖金。
|
21天前
|
人工智能 Java API
阿里云开源 AI 应用开发框架:Spring AI Alibaba
近期,阿里云重磅发布了首款面向 Java 开发者的开源 AI 应用开发框架:Spring AI Alibaba(项目 Github 仓库地址:alibaba/spring-ai-alibaba),Spring AI Alibaba 项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。本文将详细介绍 Spring AI Alibaba 的核心特性,并通过「智能机票助手」的示例直观的展示 Spring AI Alibaba 开发 AI 应用的便利性。示例源
|
20天前
|
人工智能 前端开发 JavaScript
拿下奇怪的前端报错(一):报错信息是一个看不懂的数字数组Buffer(475) [Uint8Array],让AI大模型帮忙解析
本文介绍了前端开发中遇到的奇怪报错问题,特别是当错误信息不明确时的处理方法。作者分享了自己通过还原代码、试错等方式解决问题的经验,并以一个Vue3+TypeScript项目的构建失败为例,详细解析了如何从错误信息中定位问题,最终通过解读错误信息中的ASCII码找到了具体的错误文件。文章强调了基础知识的重要性,并鼓励读者遇到类似问题时不要慌张,耐心分析。
|
25天前
|
人工智能 搜索推荐 API
用于企业AI搜索的Bocha Web Search API,给LLM提供联网搜索能力和长文本上下文
博查Web Search API是由博查提供的企业级互联网网页搜索API接口,允许开发者通过编程访问博查搜索引擎的搜索结果和相关信息,实现在应用程序或网站中集成搜索功能。该API支持近亿级网页内容搜索,适用于各类AI应用、RAG应用和AI Agent智能体的开发,解决数据安全、价格高昂和内容合规等问题。通过注册博查开发者账户、获取API KEY并调用API,开发者可以轻松集成搜索功能。
|
26天前
|
人工智能 Java API
阿里云开源 AI 应用开发框架:Spring AI Alibaba
阿里云开源 Spring AI Alibaba,旨在帮助 Java 开发者快速构建 AI 应用,共同构建物理新世界。
|
2月前
|
存储 人工智能 测试技术
Minstrel自动生成结构化提示,让AI为AI写提示词的多代理提示生成框架
在人工智能迅速发展的背景下,有效利用大型语言模型(LLMs)成为重要议题。9月发布的这篇论文提出了LangGPT结构化提示框架和Minstrel多代理提示生成系统,旨在帮助非AI专家更好地使用LLMs。LangGPT通过模块化设计提高提示的泛化能力和可重用性,Minstrel则通过多代理协作自动生成高质量提示。实验结果显示,这两种方法显著提升了LLMs的性能,特别是在大规模模型上效果显著。
73 2
Minstrel自动生成结构化提示,让AI为AI写提示词的多代理提示生成框架