精准生成Fake人脸!Amazon全新GAN模型给你全方位无死角美颜

简介: 近日,来自 Amazon One 的研究人员提出了一个训练 GAN 的框架,可以对生成的图像进行显式控制。该框架能够通过设置确切的属性(例如年龄,姿势,表情等)来控制生成的图像。

微信图片_20220112093747.png


Amazon One团队最近提出了一个可以对生成的图像进行显式属性控制的GAN训练框架,能够通过设置确切的属性来控制生成的图像,如年龄、姿势、表情等。
 


微信图片_20220112093757.png


这篇论文目前已经发布在arxiv上,并且在Google网盘中有相应的补充说明。 目前大多数编辑GAN生成的图像的方法都是通过利用隐空间解构属性来实现部分控制,这些属性是在标准GAN训练后隐式获得的。这种方法能够改变某些属性的相对强度,但不能显式地设置它们的值。 而最近提出的方法,是为显式的准确控制人脸属性而设计的,利用可变形的3D人脸模型来实现GAN中的细粒度控制能力。 


微信图片_20220112093759.gif


与以往方法不同的是,这种控制不受限于可变形的三维人脸模型参数,并且可以扩展到人脸领域之外。 使用对比学习,获得了具有明确分解隐空间的GAN。这种分解被用来训练控制编码器,将人类可解释的输入映射到合适的隐向量,从而允许显式的控制。

 微信图片_20220112093801.gif


在人脸领域,研究人员展示了对身份、年龄、姿势、表情、头发颜色和照明的控制,还演示了我们的框架在画像和狗图像生成领域的控制能力,证明了新的方法在质量和数量上都达到了SOTA。


 微信图片_20220112093803.png


在第一阶段,构建每一个batch的每个属性都有一对隐向量,共享一个相应的子向量。 除了对抗性损失外,该批图像中的每张图像都会以对比的方式,逐个属性地与其他所有图像进行比较,并考虑到它的子向量是相同还是不同。 在第二阶段,编码器被训练成将可解释的参数映射到合适的隐向量。 在推理阶段,是通过将第k个编码器输入设置为所需值,实现对属性k的显式控制。 


微信图片_20220112093805.gif


对光线、角度和表情的显式控制效果: 


微信图片_20220112093808.png


研究人员使用了ArcFace提取生成图像的嵌入向量,具体做法是生成10K个共享ID属性的图像对和具有不同的姿势、照明和表情属性的图像。 对发色和年龄的控制效果: 


微信图片_20220112093810.png微信图片_20220112093811.png


为了验证模型确实对输出有明确的控制,研究人员进行了控制精度的比较。从FFHQ中随机选取10K张图像,并对其属性进行预测,以产生一个在真实图像中出现的可行属性池。 还可以实现在保持其他属性不变的情况下,改变绘画的艺术风格:

 微信图片_20220112093813.png


对于喜欢养宠物的人来说,也可以显式控制生成的狗狗图像的一些属性:


微信图片_20220112093815.png


同时,不只可以改变一个属性,还可以同时控制多个属性值: 


微信图片_20220112093817.png


通过测试Amazon One的可控GAN模型,本以为现在的美颜工具已经十分好用了,看来未来还会有更加惊艳的功能可以期待。  


参考链接:


https://alonshoshan10.github.io/gan_control/


论文地址:


https://arxiv.org/pdf/2101.02477.pdf

相关文章
|
3月前
|
XML 安全 Java
使用 Spring 的 @Aspect 和 @Pointcut 注解简化面向方面的编程 (AOP)
面向方面编程(AOP)通过分离横切关注点,如日志、安全和事务,提升代码模块化与可维护性。Spring 提供了对 AOP 的强大支持,核心注解 `@Aspect` 和 `@Pointcut` 使得定义切面与切入点变得简洁直观。`@Aspect` 标记切面类,集中处理通用逻辑;`@Pointcut` 则通过表达式定义通知的应用位置,提高代码可读性与复用性。二者结合,使开发者能清晰划分业务逻辑与辅助功能,简化维护并提升系统灵活性。Spring AOP 借助代理机制实现运行时织入,与 Spring 容器无缝集成,支持依赖注入与声明式配置,是构建清晰、高内聚应用的理想选择。
467 0
|
人工智能 计算机视觉 Python
AI计算机视觉笔记十九:Swin Transformer训练
本文介绍了使用自定义数据集训练和测试目标检测模型的步骤。首先,通过安装并使用标注工具labelme准备数据集;接着修改配置文件以适应自定义类别,并调整预训练模型;然后解决训练过程中遇到的依赖冲突问题并完成模型训练;最后利用测试命令验证模型效果。文中提供了具体命令及文件修改指导。
|
人工智能 自然语言处理 算法
可自主进化的Agent?首个端到端智能体符号化训练框架开源了
【8月更文挑战第13天】近年来,AI领域在构建能自主完成复杂任务的智能体方面取得重大突破。这些智能体通常基于大型语言模型,可通过学习适应环境。为简化设计流程,AIWaves Inc.提出智能体符号化学习框架,使智能体能在数据中心模式下自我优化,以推进通向通用人工智能的道路。该框架将智能体视作符号网络,利用提示、工具及其组合方式定义可学习的权重,并采用自然语言模拟反向传播和梯度下降等学习过程,指导智能体的自我改进。实验显示,此框架能有效促进智能体的自主进化。尽管如此,该框架仍面临高质量提示设计及计算资源需求高等挑战。论文详情参见:https://arxiv.org/pdf/2406.18532。
483 58
|
人工智能 自然语言处理 物联网
智能体进化发展了一年,现在的RPA Agent迭代到什么程度了?
智能体技术在过去一年迅速发展,RPA Agent已成为连接多种应用系统的关键工具。实在智能推出的实在Agent 7.0,通过自然语言处理和屏幕识别技术,实现了从需求输入到任务执行的全流程自动化,大幅降低了智能体构建门槛。该平台不仅能在企业级应用中提供专业服务,还能满足个人用户的多样化需求,真正实现了端到端的自动化解决方案。
435 6
智能体进化发展了一年,现在的RPA Agent迭代到什么程度了?
|
机器学习/深度学习 计算机视觉
人脸关键点
【6月更文挑战第20天】
571 5
|
存储 机器人 API
Nvidia Isaac Sim图形界面 入门教程 2024(3)
本文是Nvidia Isaac Sim图形界面的入门教程,介绍了Isaac Sim GUI的界面组件、基本操作、物体和视角调整方法,并通过实例演示了如何创建和变换物体、构造铰接式物体以及调整环境和视角。
3292 2
|
Java Linux Shell
centos7内网离线安装face_recognition、python、pip、CMake、dlib,离线升级gcc/切换gcc,文末有face_recognition的docker版本
公司项目需要人脸识别,本来app自带人脸识别,结果api支持的设备试了一圈就一个同事的华为Mate40Pro可以,所以使用无望。接着找了一下免费的java离线人脸识别sdk,发现虹软的确实简单好用,一会就在linux上弄好并测试通过了,然而在准备集成进去开写代码时,不小心看到了一眼首次激活需联网,后续方可离线使用,好吧,我们内网机器首次都不可能的,接着看了下离线激活方法,首先需要企业认证,这一步我们肯定没法做的,毕竟不是之前的小公司了,营业执照啥的随便给我肯定不行,直接放弃了。后来在同事推荐下看了下face_recognition这个项目,之前基本没用过python,于是有了漫长的踩坑之旅。
1357 1
设置VSCode终端命令行清除快捷键Ctrl+K或Ctrl+L
设置VSCode终端命令行清除快捷键Ctrl+K或Ctrl+L
|
机器学习/深度学习 算法 数据安全/隐私保护
图像滤镜艺术---人脸编辑(五官微调+瘦脸美型)
原文:图像滤镜艺术---人脸编辑(五官微调+瘦脸美型) 写本文的目的,实际上是对目前人脸美型这一块技术做个总结,跟大家 分享一下!目前提到美颜算法,大家都会想到磨皮美白 /大眼瘦脸,实际上做好 美颜这件事情,关乎的不仅仅是这些,还有五官的协调比例等,今天我们主要说一下五官的微调,这里我直接称之为人脸编辑吧。
3864 0
|
机器学习/深度学习 分布式计算 供应链
Hadoop在特定行业中的应用实例
【8月更文第28天】Hadoop是一个强大的分布式计算框架,能够处理大规模数据集。由于其高可扩展性和成本效益,Hadoop被广泛应用于多个行业中,如金融、医疗保健和零售等。本文将探讨Hadoop在这些行业的具体应用场景和一些成功案例。
548 0