大数据进阶之路——Spark SQL基本配置

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 文章目录

文章目录

Spark安装

编译失败

环境搭建

Standalone

本地IDE

HiveContextAPP

SparkSessinon

Spark Shell

Spark Sql

thriftserver/beeline的使用

jdbc


MapReduce的局限性:

1)代码繁琐;

2)只能够支持map和reduce方法;

3)执行效率低下;

4)不适合迭代多次、交互式、流式的处理;

框架多样化:

1)批处理(离线):MapReduce、Hive、Pig

2)流式处理(实时): Storm、JStorm

3)交互式计算:Impala


学习、运维成本无形中都提高了很多


===> Spark

image.png

Spark安装

前置要求:

1)Building Spark using Maven requires Maven 3.3.9 or newer and Java 7+
2)export MAVEN_OPTS="-Xmx2g -XX:ReservedCodeCacheSize=512m"

mvn编译命令:

./build/mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -DskipTests clean package

[hadoop@hadoop001 spark-2.1.0]$ cat pom.xml 
[hadoop@hadoop001 spark-2.1.0]$ pwd
/home/hadoop/source/spark-2.1.0
<properties>
    <hadoop.version>2.2.0</hadoop.version>
    <protobuf.version>2.5.0</protobuf.version>
    <yarn.version>${hadoop.version}</yarn.version>
......
</properties>
...............
<profile>
  <id>hadoop-2.6</id>
  <properties>
    <hadoop.version>2.6.4</hadoop.version>
    <jets3t.version>0.9.3</jets3t.version>
    <zookeeper.version>3.4.6</zookeeper.version>
    <curator.version>2.6.0</curator.version>
  </properties>
</profile>

路径下执行

[hadoop@hadoop001 spark-2.1.0]$ pwd
/home/hadoop/source/spark-2.1.0

==> ./build/mvn -Pyarn -Phadoop-2.6 -Phive -Phive-thriftserver -Dhadoop.version=2.6.0-cdh5.7.0 -DskipTests clean package


编译可以运行的包


./dev/make-distribution.sh --name 2.6.0-cdh5.7.0 --tgz -Pyarn -Phadoop-2.6 -Phive -Phive-thriftserver -Dhadoop.version=2.6.0-cdh5.7.0


make-distribution.sh

image.png

编译失败

Failed to execute goal on project ...: Could not resolve dependencies for project ...

pom.xml中添加

<repository>
      <id>cloudera</id>
      <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>

如果scala是2.10

需要添加./dev/change-scala-version.sh 2.10


环境搭建

local


tar -zxvf park-2.1.0-bin-2.6.0-cdh5.7.0.tgz -C ~/app/


配置环境SPARK_HOME


source ~./bash_profile


运行

spark-shell --master local[2]

  at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
  at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
a)
Caused by: org.datanucleus.exceptions.NucleusException: Attempt to invoke the "BONECP" plugin to create a ConnectionPool gave an error : The specified datastore driver ("com.mysql.jdbc.Driver") was not found in the CLASSPATH. Please check your CLASSPATH specification, and the name of the driver.
  at org.datanucleus.store.rdbms.ConnectionFactoryImpl.generateDataSources(ConnectionFactoryImpl.java:259)
 java:104)
.............................................
  at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:3005)
 571)
  at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.createDefaultDB(HiveMetaStore.java:624)
  at org.datanucleus.plugin.NonManagedPluginRegistry.createExecutableExtension(NonManagedPluginRegistry.java:631)
  at org.datanucleus.plugin.PluginManager.createExecutableExtension(PluginManager.java:325)
  at org.datanucleus.store.AbstractStoreManager.registerConnectionFactory(AbstractStoreManager.java:282)
  at org.datanucleus.store.AbstractStoreManager.<init>(AbstractStoreManager.java:240)
Caused by: org.datanucleus.store.rdbms.connectionpool.DatastoreDriverNotFoundException: The specified datastore driver ("com.mysql.jdbc.Driver") was not found in the CLASSPATH. Please check your CLASSPATH specification, and the name of the driver.
  at org.datanucleus.store.rdbms.connectionpool.AbstractConnectionPoolFactory.loadDriver(AbstractConnectionPoolFactory.java:58)
  at org.datanucleus.store.rdbms.connectionpool.BoneCPConnectionPoolFactory.createConnectionPool(BoneCPConnectionPoolFactory.java:54)
  at org.datanucleus.store.rdbms.ConnectionFactoryImpl.generateDataSources(ConnectionFactoryImpl.java:238)
  ... 145 more

原因没有引入mysql驱动

spark-shell --master local[2] --jar /home/hadoop/software/mysql-connector-java-5.1.27-bin.jar

[hadoop@hadoop001 software]$ spark-shell --master local[2] --jars /home/hadoop/software/mysql-connector-java-5.1.27-bin.jar 
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
20/10/16 20:42:32 WARN SparkContext: Support for Java 7 is deprecated as of Spark 2.0.0
20/10/16 20:42:33 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
20/10/16 20:42:35 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
20/10/16 20:42:50 ERROR ObjectStore: Version information found in metastore differs 1.1.0 from expected schema version 1.2.0. Schema verififcation is disabled hive.metastore.schema.verification so setting version.
20/10/16 20:42:53 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
Spark context Web UI available at http://192.168.43.214:4041
Spark context available as 'sc' (master = local[2], app id = local-1602906155852).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.1.0
      /_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_51)
Type in expressions to have them evaluated.
Type :help for more information.

Standalone

Spark Standalone模式的架构和Hadoop HDFS/YARN很类似的

1 master + n worker


spark-env.sh


SPARK_MASTER_HOST=hadoop001

SPARK_WORKER_CORES=2

SPARK_WORKER_MEMORY=2g

SPARK_WORKER_INSTANCES=1


master:


hadoop1

slaves:


hadoop2

hadoop3

hadoop4

....

hadoop10


==> start-all.sh 会在 hadoop1机器上启动master进程,在slaves文件配置的所有hostname的机器上启动worker进程


Spark WordCount统计

val file = spark.sparkContext.textFile(“file:///home/hadoop/data/wc.txt”)

val wordCounts = file.flatMap(line => line.split(",")).map((word => (word, 1))).reduceByKey(_ + _)

wordCounts.collect

image.png

本地IDE

A master URL must be set in your configuration


点击edit configuration,在左侧点击该项目。在右侧VM options中输入“-Dspark.master=local”,指示本程序本地单线程运行,再次运行即可。

package org.example
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
object SQLContextAPP {
  def main(args: Array[String]): Unit = {
    //1创建相应的Spark
    val sparkConf = new SparkConf()
    sparkConf.setAppName("SQLContextAPP")
    val sc = new SparkContext(sparkConf)
    val sqlContext = new SQLContext(sc)
    //2数据处理
    val people = sqlContext.read.format("json").load("people.json")
    people.printSchema()
    people.show()
    //3关闭资源
    sc.stop()
  }
}
root
 |-- age: long (nullable = true)
 |-- name: string (nullable = true)
.........................
| age|   name|
+----+-------+
|null|Michael|
|  30|   Andy|
|  19| Justin|
+----+-------+

配置maven环境变量cmd控制台提示:mvn不是内部或外部命令,也不是可运行的程序或批处理文件首先maven环境变量:

变量名:MAVEN_HOME
变量值:E:\apache-maven-3.2.3
变量名:Path
变量值:;%MAVEN_HOME%\bin

然后到项目的目录下直接执行

C:\Users\jacksun\IdeaProjects\SqarkSQL\ mvn clean package -DskipTests

image.png

在集群上测试

spark-submit \
--name SQLContextApp \
--class org.example.SQLContextApp \
--master local[2] \
/home/hadoop/lib/sql-1.0.jar \
/home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/examples/src/main/resources/people.json

HiveContextAPP

注意:

1)To use a HiveContext, you do not need to have an existing Hive setup

2)hive-site.xml

package org.example
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.hive.HiveContext
object HiveContextAPP {
  def main(args: Array[String]): Unit = {
    //1创建相应的Spark
    val path =args(0)
    val sparkConf = new SparkConf()
    //测试和生产中AppName和Master是通过脚本执行的
    //sparkConf.setAppName("HiveContextAPP").setMaster("local[2]")
    val sc = new SparkContext(sparkConf)
    val hiveContext = new HiveContext(sc)
    //2数据处理
    hiveContext.table("emp").show
    //3关闭资源
    sc.stop()
  }
}
spark-submit \
--name HiveContextApp \
--class org.example.HiveContextApp \
--master local[2] \
/home/hadoop/lib/sql-1.0.jar \
--jars /home/hadoop/software/mysql-connector-java-5.1.27-bin.jar 

SparkSessinon

package org.example
import org.apache.spark.sql.SparkSession
object SparkSessionApp {
  def main(args: Array[String]) {
    val spark = SparkSession.builder().appName("SparkSessionApp")
      .master("local[2]").getOrCreate()
    val people = spark.read.json("people.json")
    people.show()
    spark.stop()
  }
}

Spark Shell

  • 启动hive
[hadoop@hadoop001 bin]$ pwd
/home/hadoop/app/hive-1.1.0-cdh5.7.0/bin
[hadoop@hadoop001 bin]$ hive
ls: cannot access /home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/lib/spark-assembly-*.jar: No such file or directory
which: no hbase in (/home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/bin:/home/hadoop/app/scala-2.11.8/bin:/home/hadoop/app/hive-1.1.0-cdh5.7.0/bin:/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/bin:/home/hadoop/app/apache-maven-3.3.9/bin:/home/hadoop/app/jdk1.7.0_51/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin)
Logging initialized using configuration in jar:file:/home/hadoop/app/hive-1.1.0-cdh5.7.0/lib/hive-common-1.1.0-cdh5.7.0.jar!/hive-log4j.properties
WARNING: Hive CLI is deprecated and migration to Beeline is recommended.
hive> 

拷贝

[hadoop@hadoop001 conf]$ cp hive-site.xml ~/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/conf/


启动Spark

spark-shell --master local[2] --jars /home/hadoop/software/mysql-connector-java-5.1.27-bin.jar

scala> spark.sql("show tables").show
+--------+------------+-----------+
|database|   tableName|isTemporary|
+--------+------------+-----------+
| default|        dept|      false|
| default|         emp|      false|
| default|hive_table_1|      false|
| default|hive_table_2|      false|
| default|           t|      false|
+--------+------------+-----------+
hive> show tables;
OK
dept
emp
hive_wordcount
scala> spark.sql("select * from emp e join dept d on e.deptno=d.deptno").show
+-----+------+---------+----+----------+------+------+------+------+----------+--------+
|empno| ename|      job| mgr|  hiredate|   sal|  comm|deptno|deptno|     dname|     loc|
+-----+------+---------+----+----------+------+------+------+------+----------+--------+
| 7369| SMITH|    CLERK|7902|1980-12-17| 800.0|  null|    20|    20|  RESEARCH|  DALLAS|
| 7499| ALLEN| SALESMAN|7698| 1981-2-20|1600.0| 300.0|    30|    30|     SALES| CHICAGO|
| 7521|  WARD| SALESMAN|7698| 1981-2-22|1250.0| 500.0|    30|    30|     SALES| CHICAGO|
| 7566| JONES|  MANAGER|7839|  1981-4-2|2975.0|  null|    20|    20|  RESEARCH|  DALLAS|
| 7654|MARTIN| SALESMAN|7698| 1981-9-28|1250.0|1400.0|    30|    30|     SALES| CHICAGO|
| 7698| BLAKE|  MANAGER|7839|  1981-5-1|2850.0|  null|    30|    30|     SALES| CHICAGO|
| 7782| CLARK|  MANAGER|7839|  1981-6-9|2450.0|  null|    10|    10|ACCOUNTING|NEW YORK|
| 7788| SCOTT|  ANALYST|7566| 1987-4-19|3000.0|  null|    20|    20|  RESEARCH|  DALLAS|
| 7839|  KING|PRESIDENT|null|1981-11-17|5000.0|  null|    10|    10|ACCOUNTING|NEW YORK|
| 7844|TURNER| SALESMAN|7698|  1981-9-8|1500.0|   0.0|    30|    30|     SALES| CHICAGO|
| 7876| ADAMS|    CLERK|7788| 1987-5-23|1100.0|  null|    20|    20|  RESEARCH|  DALLAS|
| 7900| JAMES|    CLERK|7698| 1981-12-3| 950.0|  null|    30|    30|     SALES| CHICAGO|
| 7902|  FORD|  ANALYST|7566| 1981-12-3|3000.0|  null|    20|    20|  RESEARCH|  DALLAS|
| 7934|MILLER|    CLERK|7782| 1982-1-23|1300.0|  null|    10|    10|ACCOUNTING|NEW YORK|
+-----+------+---------+----+----------+------+------+------+------+----------+--------+
hive> select * from emp e join dept d on e.deptno=d.deptno
    > ;
Query ID = hadoop_20201020054545_f7fbda3e-439e-409e-b2ce-3c553d969ed4
Total jobs = 1
20/10/20 05:48:46 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Execution log at: /tmp/hadoop/hadoop_20201020054545_f7fbda3e-439e-409e-b2ce-3c553d969ed4.log
2020-10-20 05:48:49 Starting to launch local task to process map join;  maximum memory = 477102080
2020-10-20 05:48:51 Dump the side-table for tag: 1 with group count: 4 into file: file:/tmp/hadoop/5c8577b3-c00d-4ece-9899-c0e3de66f2f2/hive_2020-10-20_05-48-27_437_556791932773953494-1/-local-10003/HashTable-Stage-3/MapJoin-mapfile01--.hashtable
2020-10-20 05:48:51 Uploaded 1 File to: file:/tmp/hadoop/5c8577b3-c00d-4ece-9899-c0e3de66f2f2/hive_2020-10-20_05-48-27_437_556791932773953494-1/-local-10003/HashTable-Stage-3/MapJoin-mapfile01--.hashtable (404 bytes)
2020-10-20 05:48:51 End of local task; Time Taken: 2.691 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1602849227137_0002, Tracking URL = http://hadoop001:8088/proxy/application_1602849227137_0002/
Kill Command = /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/bin/hadoop job  -kill job_1602849227137_0002
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2020-10-20 05:49:13,663 Stage-3 map = 0%,  reduce = 0%
2020-10-20 05:49:36,950 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 13.08 sec
MapReduce Total cumulative CPU time: 13 seconds 80 msec
Ended Job = job_1602849227137_0002
MapReduce Jobs Launched: 
Stage-Stage-3: Map: 1   Cumulative CPU: 13.08 sec   HDFS Read: 7639 HDFS Write: 927 SUCCESS
Total MapReduce CPU Time Spent: 13 seconds 80 msec
OK
7369  SMITH CLERK 7902  1980-12-17  800.0 NULL  20  20  RESEARCH  DALLAS
7499  ALLEN SALESMAN  7698  1981-2-20 1600.0  300.0 30  30  SALES CHICAGO
7521  WARD  SALESMAN  7698  1981-2-22 1250.0  500.0 30  30  SALES CHICAGO
7566  JONES MANAGER 7839  1981-4-2  2975.0  NULL  20  20  RESEARCH  DALLAS
7654  MARTIN  SALESMAN  7698  1981-9-28 1250.0  1400.0  30  30  SALES CHICAGO
7698  BLAKE MANAGER 7839  1981-5-1  2850.0  NULL  30  30  SALES CHICAGO
7782  CLARK MANAGER 7839  1981-6-9  2450.0  NULL  10  10  ACCOUNTING  NEW YORK
7788  SCOTT ANALYST 7566  1987-4-19 3000.0  NULL  20  20  RESEARCH  DALLAS
7839  KING  PRESIDENT NULL  1981-11-17  5000.0  NULL  10  10  ACCOUNTINGNEW YORK
7844  TURNER  SALESMAN  7698  1981-9-8  1500.0  0.0 30  30  SALES CHICAGO
7876  ADAMS CLERK 7788  1987-5-23 1100.0  NULL  20  20  RESEARCH  DALLAS
7900  JAMES CLERK 7698  1981-12-3 950.0 NULL  30  30  SALES CHICAGO
7902  FORD  ANALYST 7566  1981-12-3 3000.0  NULL  20  20  RESEARCH  DALLAS
7934  MILLER  CLERK 7782  1982-1-23 1300.0  NULL  10  10  ACCOUNTING  NEW YORK
Time taken: 71.998 seconds, Fetched: 14 row(s)
hive> 

SPARK SQL 基本秒出结果,hive比较耗时

  • hive-site.xml
    删除警告
<property>
  <name>hive.metastore.schema.verification</name>
  <value>false</value>
</property>

Spark Sql

20/10/20 06:20:09 INFO DAGScheduler: Job 1 finished: processCmd at CliDriver.java:376, took 0.261151 s
7369  SMITH CLERK 7902  1980-12-17  800.0 NULL  20  20  RESEARCH  DALLAS
7499  ALLEN SALESMAN  7698  1981-2-20 1600.0  300.0 30  30  SALES CHICAGO
7521  WARD  SALESMAN  7698  1981-2-22 1250.0  500.0 30  30  SALES CHICAGO
7566  JONES MANAGER 7839  1981-4-2  2975.0  NULL  20  20  RESEARCH  DALLAS
7654  MARTIN  SALESMAN  7698  1981-9-28 1250.0  1400.0  30  30  SALES CHICAGO
7698  BLAKE MANAGER 7839  1981-5-1  2850.0  NULL  30  30  SALES CHICAGO
7782  CLARK MANAGER 7839  1981-6-9  2450.0  NULL  10  10  ACCOUNTING  NEW YORK
7788  SCOTT ANALYST 7566  1987-4-19 3000.0  NULL  20  20  RESEARCH  DALLAS
7839  KING  PRESIDENT NULL  1981-11-17  5000.0  NULL  10  10  ACCOUNTINGNEW YORK
7844  TURNER  SALESMAN  7698  1981-9-8  1500.0  0.0 30  30  SALES CHICAGO
7876  ADAMS CLERK 7788  1987-5-23 1100.0  NULL  20  20  RESEARCH  DALLAS
7900  JAMES CLERK 7698  1981-12-3 950.0 NULL  30  30  SALES CHICAGO
7902  FORD  ANALYST 7566  1981-12-3 3000.0  NULL  20  20  RESEARCH  DALLAS
7934  MILLER  CLERK 7782  1982-1-23 1300.0  NULL  10  10  ACCOUNTING  NEW YORK
Time taken: 13.625 seconds, Fetched 14 row(s)
20/10/20 06:20:09 INFO CliDriver: Time taken: 13.625 seconds, Fetched 14 row(s)

explain extended select a.key*(2+3), b.value from t a join t b on a.key = b.key and a.key > 3;

== Parsed Logical Plan ==
'Project [unresolvedalias(('a.key * (2 + 3)), None), 'b.value]
+- 'Join Inner, (('a.key = 'b.key) && ('a.key > 3))
   :- 'UnresolvedRelation `t`, a
   +- 'UnresolvedRelation `t`, b
== Analyzed Logical Plan ==
(CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE)): double, value: string
Project [(cast(key#321 as double) * cast((2 + 3) as double)) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- Join Inner, ((key#321 = key#323) && (cast(key#321 as double) > cast(3 as double)))
   :- SubqueryAlias a
   :  +- MetastoreRelation default, t
   +- SubqueryAlias b
      +- MetastoreRelation default, t
== Optimized Logical Plan ==
Project [(cast(key#321 as double) * 5.0) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- Join Inner, (key#321 = key#323)
   :- Project [key#321]
   :  +- Filter (isnotnull(key#321) && (cast(key#321 as double) > 3.0))
   :     +- MetastoreRelation default, t
   +- Filter (isnotnull(key#323) && (cast(key#323 as double) > 3.0))
      +- MetastoreRelation default, t
== Physical Plan ==
*Project [(cast(key#321 as double) * 5.0) AS (CAST(key AS DOUBLE) * CAST((2 + 3) AS DOUBLE))#325, value#324]
+- *SortMergeJoin [key#321], [key#323], Inner
   :- *Sort [key#321 ASC NULLS FIRST], false, 0
   :  +- Exchange hashpartitioning(key#321, 200)
   :     +- *Filter (isnotnull(key#321) && (cast(key#321 as double) > 3.0))
   :        +- HiveTableScan [key#321], MetastoreRelation default, t
   +- *Sort [key#323 ASC NULLS FIRST], false, 0
      +- Exchange hashpartitioning(key#323, 200)
         +- *Filter (isnotnull(key#323) && (cast(key#323 as double) > 3.0))
            +- HiveTableScan [key#323, value#324], MetastoreRelation default, t

thriftserver/beeline的使用

spark下的sbin


启动thriftserver:

./start-thriftserver.sh --master local[2] --jars /home/hadoop/software/mysql-connector-java-5.1.27-bin.jar

image.png

默认端口是10000 ,可以修改

./start-thriftserver.sh  \
--master local[2] \
--jars ~/software/mysql-connector-java-5.1.27-bin.jar  \
--hiveconf hive.server2.thrift.port=14000 

2)启动beeline

beeline -u jdbc:hive2://localhost:10000 -n hadoop

image.png

beeline -u jdbc:hive2://localhost:14000 -n hadoop


thriftserver和普通的spark-shell/spark-sql有什么区别?


1)spark-shell、spark-sql都是一个spark application;

2)thriftserver


不管你启动多少个客户端(beeline/code),永远都是一个spark application

解决了一个数据共享的问题,多个客户端可以共享数据;

jdbc

注意事项:在使用jdbc开发时,一定要先启动thriftserver
Exception in thread "main" java.sql.SQLException: 
Could not open client transport with JDBC Uri: jdbc:hive2://hadoop001:14000: 
java.net.ConnectException: Connection refused
<dependency>
      <groupId>org.spark-project.hive</groupId>
      <artifactId>hive-jdbc</artifactId>
      <version>1.2.1.spark2</version>
      <!--
      <scope>provided</scope>
      -->
    </dependency>
package org.example
import java.sql.DriverManager
object JDBCApp {
  def main(args: Array[String]) {
    Class.forName("org.apache.hive.jdbc.HiveDriver")
    val conn = DriverManager.getConnection("jdbc:hive2://192.168.43.214:10000","hadoop","")
    val pstmt = conn.prepareStatement("select empno, ename, sal from emp")
    val rs = pstmt.executeQuery()
    while (rs.next()) {
      println("empno:" + rs.getInt("empno") +
        " , ename:" + rs.getString("ename") +
        " , sal:" + rs.getDouble("sal"))
    }
    rs.close()
    pstmt.close()
    conn.close()
  }
}

image.png


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
3月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
118 0
|
3月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
107 0
|
3天前
|
SQL 分布式计算 Java
Spark SQL向量化执行引擎框架Gluten-Velox在AArch64使能和优化
本文摘自 Arm China的工程师顾煜祺关于“在 Arm 平台上使用 Native 算子库加速 Spark”的分享,主要内容包括以下四个部分: 1.技术背景 2.算子库构成 3.算子操作优化 4.未来工作
|
3月前
|
存储 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
60 1
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
|
2月前
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
|
3月前
|
运维 监控 数据可视化
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
128 1
|
3月前
|
消息中间件 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
55 2
|
3月前
|
存储 消息中间件 druid
大数据-151 Apache Druid 集群模式 配置启动【上篇】 超详细!
大数据-151 Apache Druid 集群模式 配置启动【上篇】 超详细!
112 1
|
3月前
|
SQL 消息中间件 分布式计算
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)
100 0
|
3月前
|
SQL 大数据
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(二)
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(二)
97 0