【机器学习系列】- 准确率、召回率、F1值的思考

简介: 关于如何评估算法,我们常通过准确率、召回率和F1值进行评估。

 简述概念


准确率(Accuracy)

准确率(ACC), 所有预测正确的占总样本的比重。

精确率/查准率(Precision)

精确率(P):精确率/查准率,表示正确预测为正的占全部预测为正的比例。对某一类别而言为正确预测为该类别的样本数与预测为该类别的总样本数之比。

召回率(Recall)

召回率/查全率,表示正确预测为正的占全部实际为正的比例。对某一类别而言为正确预测为该类别的样本数与该类别的总样本数之比。

F1值

F1值:F1值为精确率和召回率的调和平均数,值越大越好。

F1分数(F1 Score),是统计学中用来衡量二分类模型精确度的一种指标。它同时兼顾了分类模型的精确率和召回率。F1分数可以看作是模型精确率和召回率的一种调和平均,它的最大值是1,最小值是0。

详解概念


截屏2021-12-30 下午11.18.30.png


召回率/准确率部分

A + B -> 分类/预测/推荐的正确结果。

C + B -> 分类/预测/推荐的命中结果。

准确率 Precision = B  / (B + C) * 100% 代表命中的准确率。

召回率 Recall     = B  / (B + A) * 100% 代表命中的召回率。

准确率表示算法产出有多少结果是正确的。

召回率表示所有准确的条目中有多少被命中。

F-Measure 又称 F-Score, 其公式为:

 

截屏2021-12-30 下午11.14.56.png

image.gif

当beta = 1时,就是F1-Score:

截屏2021-12-30 下午11.15.00.png

image.gif

其中beta = 2时,F2值。更加注重召回率。

其中beta = 0.5时,F0.5值。更加注重准确率。

因此我们常用beta = 1时,F1值来综合考虑Precision和Recall,其值越高,通常表示算法性能越好。


目录
相关文章
|
机器学习/深度学习 人工智能 监控
如何利用机器学习提高人脸识别准确率
如何利用机器学习提高人脸识别准确率
485 1
|
机器学习/深度学习
【机器学习】准确率、精确率、召回率、误报率、漏报率概念及公式
机器学习评估指标中的准确率、精确率、召回率、误报率和漏报率等概念,并给出了这些指标的计算公式。
3440 0
|
机器学习/深度学习 Serverless Python
`sklearn.metrics`是scikit-learn库中用于评估机器学习模型性能的模块。它提供了多种评估指标,如准确率、精确率、召回率、F1分数、混淆矩阵等。这些指标可以帮助我们了解模型的性能,以便进行模型选择和调优。
`sklearn.metrics`是scikit-learn库中用于评估机器学习模型性能的模块。它提供了多种评估指标,如准确率、精确率、召回率、F1分数、混淆矩阵等。这些指标可以帮助我们了解模型的性能,以便进行模型选择和调优。
|
机器学习/深度学习 Java
机器学习中的召回率与准确率详解
机器学习中的召回率与准确率详解
|
机器学习/深度学习 测试技术
机器学习系列 | 01:多类别分类任务(multi-class)中为何precision,recall和F1相等?
在 multi-class 分类任务中,如果使用 micro 类指标,那么 micro-precision, micro-recall和micro-F1值都是相等的。本文主要针对这个现象进行解释。
|
机器学习/深度学习
瞎聊机器学习——准确率、精确率、召回率、F1 score
瞎聊机器学习——准确率、精确率、召回率、F1 score
|
2月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1222 6
|
7月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
8月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。

热门文章

最新文章