机器学习算法—KMEANS算法原理及阿里云PAI平台算法模块参数说明

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云PAI平台提供了大量已经封装完成可以直接使用的机器学习算法模块,本文说明KMEANS算法的原理并在原理的基础上说明PAI平台KMEANS模块中参数设置的意义,根据原理介绍算法的优点和缺点

概述:

KMEANS算法又被成为K均值算法,是一种常用的聚类算法,由于不需要根据给定的训练集训练模型因此是一种无监督学习算法。其本质是根据选定的参数K将数据分类成K类,在聚类过程中从单一样本开始通过不断计算聚类数据的均值来作为整个类的中心进而再将距离此类别中心最近的数据纳入同一类。

算法原理:

1、以下图样本散点图展示数据集的整体分布情况
KM001.png
2、K值是KMEANS最重要的选择参数,直接决定着数据聚类的类别数量,在选择K值后,会在数据中随机选择K个数据样本最为初始中心点,如K=3,则结果如下图所示
KM002.png
3、计算和中心点距离最近的点,将其归入同类
KM003.png
4、每个类别当有了两个以上的数据时,类的中心就会发生变化,因此类中一旦有新的数据被划入时就需要重新计算整个类的中心点,这一步的计算也是整个算法的核心,所以称为K均值算法
KM004.png
5、通过几步计算之后的结果,能够更直观的展示出类的聚合情况和中心点的位置情况
KM005.png
6、判断聚类过程结束的标准有两个,一是中心点的位置不再发生变化,即结果收敛;二是执行了最够多次的迭代次数(通俗可以理解为计算了几次中心点位置)
KM006.png

注意事项:

1、K值是整个算法中最重要的参数,但是也是最不好确定的参数,如果需要比较好的确定K值,需要采用其他验证算法,如计算样本离最近聚类中心的总和,总和越小,则聚类的效果越好;轮廓系数,轮廓系数的范围为-1至1之间,数字越大则聚类效果越好;兰德指数,范围为-1至1之间,数字越大则聚类效果越好;同质化得分,如果所有的聚类都只包含属于单个类的成员的数据点则聚类结果将满足同质性,其取值范围为0至1之间,值越大意味着聚类结果与真实情况越吻合。
2、以上验证方法虽然对于确定K值有效,但是验证过程需要额外的计算力资源,并且占用的计算力接近于聚类过程所需要的计算力资源,数据集如果较大,则计算力的消耗会产生叠加效应。
3、较为简易的方法为,从数据集中随机抽取部分小规模数据,以散点图等可视化手段来观察数据的可能聚类数量,以此来判断K的取值。这种方法可以认为是经验法的一种表现形式,相比经验法的完全定性分析,随机抽取数据观察能够在经验的基础上增加定量的分析部分,虽然随机抽取的数据也可能有误差,但是抽取的数据量越多,则准确度越高。
4、因为初始的中心点选择是根据K的值随机选择K个点,所以选择的随机性加上迭代过程造成算法的结果只是局部最优解,毕竟反复的计算最短距离的点和类的中心都是在局部已经聚合的类的基础上进行的,而不是从全局的范围进行。

算法使用场景:

1、隐含类别的数据较为平衡的情况,如隐含类别的数据量差别较大,则聚类的效果就较差。
2、数据最好是凸数据,即隐含类别间的差异越大,则聚类效果越好,因为中心点不再变化所需要的迭代次数较少,比较容易收敛。
3、一般作为数据预处理,或者用于辅助分类贴标签使用,因为在已经经过分类的数据上再进行聚类,准确度会非常高。

阿里云PAI平台算法模块及参数设置说明:

inputTableName :输入表表名
selectedColNames:输入表中用于训练的列名,默认选择所有列
inputTablePartitions:输入表中指定哪些分区参与训练,默认选择所有分区
centerCount:聚类数K,是算法中最重要的参数,决定数据的聚类数量
loop:最大迭代次数,算法中非常重要的参数,当最大迭代次数到达但是仍然无法收敛时,则停止计算
accuracy:中心点计算终止条件,如果两次迭代之间变化低于该值,算法终止,默认值0.0,值过大则会出现欠拟合情况,值较小则中心点容易在小范围间变化造成计算结果无法收敛
distanceType:距离度量方式,euclidean(欧式距离),cosine(夹角余弦),cityblock(曼哈顿距离),默认为欧式距离
initCenterMethod:质心初始化方法,random(随机采样),topk(输入表前k行),uniform(均匀分布),external(指定初始质心表),默认值为随机采样
initCenterTableName:初始质心表名,当质心初始化方法采用指定初始质心表方式时采用
seed:初始随机种子数,正整数,默认值为当前时间,seed设置为固定值则每次聚类结果是稳定的
enableSparse:输入表数据是否为稀疏格式, 默认值为非稀疏格式
itemDelimiter:当输入表数据为稀疏格式时,kv间的分割符,默认值为空格
kvDelimiter:当输入表数据为稀疏格式时,key和value的分割符,默认值冒号
modelName:输出模型的模型名
idxTableName:输出聚类结果表,和输入表对应,并指明聚类后每条记录所属的类号
idxTablePartition:输出聚类结果表的分区表名
clusterCountTableName :输出聚类统计表,统计各个聚类包含的点的数目
centerTableName:输出聚类中心表
coreNum:节点个数,与参数memSizePerCore配对使用,正整数,默认自动计算
memSizePerCore :单个节点内存大小,单位M,正整数,默认自动计算
lifecycle:指定输出表的生命周期,默认没有生命周期

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
2天前
|
人工智能 调度 芯片
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
|
3天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
21 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
5天前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
11天前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
|
2天前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
|
2月前
|
算法 容器
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
|
1月前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
52 3
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
负载均衡 算法 应用服务中间件
5大负载均衡算法及原理,图解易懂!
本文详细介绍负载均衡的5大核心算法:轮询、加权轮询、随机、最少连接和源地址散列,帮助你深入理解分布式架构中的关键技术。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
5大负载均衡算法及原理,图解易懂!
|
2月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
66 4