独家干货 | 吴恩达深度学习专项课程精炼笔记!

简介: 独家干货 | 吴恩达深度学习专项课程精炼笔记!

image.png

吴恩达在他自己创办的在线教育平台 Coursera 上线了他的人工智能专项课程(Deep Learning Specialization)。此课程广受好评,通过视频讲解、作业与测验等让更多的人对人工智能有了了解与启蒙,国外媒体报道称:吴恩达这次深度学习课程是迄今为止,最全面、系统和容易获取的深度学习课程,堪称普通人的人工智能第一课。


本文列出了吴恩达 deeplearning.ai 专项课程的所有精炼笔记,均是红色石头精心制作的原创内容。该专项课程总共有 5 门课程,分别是:


  • 《神经网络与深度学习》
  • 《优化神经网络》
  • 《构建机器学习项目》
  • 《卷积神经网络CNN》
  • 《序列模型RNN》


下面是所有课程对应的精炼笔记。(点击标题进入链接!


deeplearning.ai笔记列表


神经网络与深度学习:


【1】深度学习概述

【2】神经网络基础之逻辑回归

【3】神经网络基础之Python与向量化

【4】浅层神经网络

【5】深层神经网络


优化神经网络:


【1】深度学习的实用层面

【2】优化算法

【3】超参数调试、Batch正则化和编程框架


构建机器学习项目:


【1】机器学习策略(上)

【2】机器学习策略(下)


卷积神经网络CNN:


【1】卷积神经网络基础

【2】深度卷积模型:案例研究

【3】目标检测

【4】人脸识别与神经风格迁移


序列模型RNN:


【1】循环神经网络(RNN)

【2】NLP和词嵌入

【3】序列模型和注意力机制

相关文章
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
1045 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
493 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
3195 1
深度学习环境搭建笔记(一):detectron2安装过程
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
3833 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
机器学习/深度学习 自然语言处理 并行计算
深度学习笔记(十四):Transormer知识总结
关于深度学习中Transformer模型的知识总结,涵盖了Self-attention机制、QKV、Multi-head attention、位置编码和并行运算等关键概念,以及如何在PyTorch中实现Self-attention。
289 1
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
490 22
|
10月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1277 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
1171 6
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
451 40
|
10月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
282 0