火爆 GitHub 的 16 张机器学习速查表,值得收藏!

简介: 火爆 GitHub 的 16 张机器学习速查表,值得收藏!

工欲善其事,必先利其器。在机器学习、深度学习研究中,优秀的参考资料和手册往往能够助我们事半功倍!今天给大家推荐一个在 GitHub 上非常受欢迎的项目:cheatsheets-ai,涉及 AI 领域完整的速查表。目前,该项目已收获近 1.1 w 的 stars 了。下面是项目地址:


https://github.com/kailashahirwar/cheatsheets-ai


该项目涉及到大数据分析、机器学习和深度学习等领域,包括数据科学相关库Numpy、Pandas、PySpark 等,机器学习相关库 Scikit-learn 等,以及深度学习相关库 TensorFlow 等,非常适合作为我们的常用工具,方便快捷。


项目目录:


image.pngimage.png


下面我们来看一下该项目具有代表性的几张 AI 速查表。


1. Numpy


Numpy 作为 Python 科学计算核心库之一,能够创建高性能多维数组对象 Array,并提供了处理数组的相关工具。

image.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.png


其它的速查表还包括:PySpark、dplyr and tidyr、ggplot2 等。

相关文章
|
机器学习/深度学习
斯坦福大学博士在GitHub发布的漫画机器学习小抄,竟斩获129k标星
斯坦福大学数据科学博士Chris Albon在GitHub上发布了一份超火的机器学习漫画小抄,发布仅仅一天就斩获GitHub榜首标星暴涨120k,小编有幸获得了一份并把它翻译成中文版本,今天给大家分享出来!
657 14
斯坦福大学博士在GitHub发布的漫画机器学习小抄,竟斩获129k标星
|
机器学习/深度学习 人工智能 算法
GitHub星标破千!斯坦福大学的284个机器学习小抄(漫画中文版)
说到人工智能必然要了解机器学习,从信息化软件,到电子商务,然后到高速发展互联网时代,到至今的云计算、大数据等,渗透到我们的生活、工作之中,在互联网的驱动下,人们更清晰的认识和使用数据,不仅仅是数据统计、分析,我们还强调数据挖掘、预测。 机器学习就是对计算机一部分数据进行学习,然后对另外一些数据进行预测与判断。 机器学习的核心是”使用算法解析数据,从中学习,然后对新数据作出决定或预测”。也就是说计算机利用已获取的数据得出某一模型,然后利用此模型进行预测的一种方法,这个过程跟人的学习过程有些类似,比如人获取一定的经验,可以对新问题进行预测。
GitHub星标破千!斯坦福大学的284个机器学习小抄(漫画中文版)
|
机器学习/深度学习
斯坦福大学博士在GitHub发布的漫画机器学习小抄,竟斩获129k标星
斯坦福大学数据科学博士Chris Albon在GitHub上发布了一份超火的机器学习漫画小抄,发布仅仅一天就斩获GitHub榜首标星暴涨120k,小编有幸获得了一份并把它翻译成中文版本,今天给大家分享出来!
|
机器学习/深度学习 人工智能 算法
GitHub星标破千!斯坦福大学的284个机器学习小抄(漫画中文版)
说到人工智能必然要了解机器学习,从信息化软件,到电子商务,然后到高速发展互联网时代,到至今的云计算、大数据等,渗透到我们的生活、工作之中,在互联网的驱动下,人们更清晰的认识和使用数据,不仅仅是数据统计、分析,我们还强调数据挖掘、预测。 机器学习就是对计算机一部分数据进行学习,然后对另外一些数据进行预测与判断。 机器学习的核心是”使用算法解析数据,从中学习,然后对新数据作出决定或预测”。也就是说计算机利用已获取的数据得出某一模型,然后利用此模型进行预测的一种方法,这个过程跟人的学习过程有些类似,比如人获取一定的经验,可以对新问题进行预测。
|
机器学习/深度学习 自然语言处理 算法
盘点当下大热的 7 大 Github 机器学习『创新』项目
盘点当下大热的 7 大 Github 机器学习『创新』项目
1246 1
盘点当下大热的 7 大 Github 机器学习『创新』项目
|
4月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1425 6
|
9月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
595 8
|
10月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
399 6

热门文章

最新文章