AI攻防算法能力几何?全新测试基准平台发布,一定要来PK下

简介: 清华大学联合阿里安全、瑞莱智慧 RealAI 等顶尖团队发布首个公平、全面的 AI 对抗攻防基准平台。AI 模型究竟是否安全,攻击和防御能力几何?只需提交至该平台,就可见能力排行。

从发展的角度来看,人工智能正在从第一代的知识驱动和第二代的数据驱动转向第三代的多元驱动,知识、数据、算法和算力成为四大因素。安全可控也成为第三代人工智能的核心发展目标,数据与算法安全成为学界和业界人士重点关注的研究主题之一。其中,在数据安全层面,数据泄露和投毒是造成数据安全风险的两个重要根源;在算法安全层面,对抗样本对人脸识别、身份认证以及刷脸闸机等人工智能应用的安全性构成了巨大的挑战。


近年来,我们更是看到了很多场景中 AI 算法被攻破的典型案例。自 2016 年以来,特斯拉 Model S、Model X 和车辆搭载的 Autopilot 自动辅助驾驶系统曾先后被腾讯科恩安全实验室攻破,高危安全漏洞和 AI 算法的缺陷使车辆处于危险的状态,并严重威胁人身和财产安全;2021 年,19 款使用 2D 人脸识别技术的国产安卓手机被 RealAI 利用具备对抗攻击能力的特制眼镜成功解锁,由此引发了人们对人脸支付、线上身份验证等的担忧。

在 AI 模型和算法面临种种挑战的情况下,如何准确地探知各个 AI 攻防模型的攻防能力变得愈加重要。这时,如果出现一个平台能够对 AI 模型和算法的攻防能力做出排名,那么我们就能够及时地调整改进,并有的放矢地采取防范措施,也就可以降低技术落地过程中的安全风险。

在 2021 年北京智源大会上,清华大学联合阿里安全、瑞莱智慧 RealAI 发布了业内最新的基于深度学习模型的对抗攻防基准平台(Adversarial Robustness Benchmark),此基准可以更加公平、全面地衡量不同 AI 攻防算法的效果,提供方便使用的鲁棒性测试工具,全面衡量 AI 攻防模型的攻防能力。用户可以通过提交模型的方式获取攻防能力排名。

微信图片_20211205113343.jpg

从左往右依次为 RealAI CEO 田天、中国科学院院士 & 清华大学人工智能研究院院长张钹、清华大学计算机系教授 & RealAI 首席科学家朱军和阿里巴巴安全部技术总监薛晖。


构建公平、全面 AI 对抗攻防基准平台的必要性


深入研究潜在针对机器学习模型的攻击算法,对提高机器学习安全性与可信赖性有重要意义。以往,研究者在衡量模型的防御性能时,基本只在一种攻击算法下进行测试,显然不够全面。攻击算法是经常变化的,需要考虑模型在多种攻击算法和更强攻击下的防御能力,这样才能比较系统地评估 AI 模型的防御能力。

与此同时,业界此前提出的各种「攻击算法排行榜」只包含一些零散的算法,测量攻击算法的环境也只包含单一的防御算法,用于评测的数据集也不多,更没有合适的统计和度量标准。

因此,此次推出的 AI 对抗安全基准基本上包含了目前主流的人工智能对抗攻防模型,涵盖了数十种典型的攻防算法。不同算法比测的过程中尽量采用了相同的实验设定和一致的度量标准,从而在最大限度上保证了比较的公平性。

微信图片_20211205113347.jpg

AI 算法的攻击结果和防御结果排名示例,左为防御算法排名,右为攻击算法排名。

基准测试平台网站:http://ml.cs.tsinghua.edu.cn/adv-bench

通过对 AI 算法的攻击结果和防御结果进行排名、比较不同算法的性能,对于建立 AI 安全基准具有重要学术意义,可以更加公平、全面地衡量不同算法的效果。

阿里巴巴安全部技术总监薛晖表示,「参与推进这项研究工作,除了帮助 AI 模型进行安全性的科学评估,也是为了促进 AI 行业进一步打造『强壮』的 AI。


AI 攻防基准平台的发展及意义


近几年来,关于 AI 对抗攻防的国际赛事不断涌现,如生成对抗网络之父 Ian Goodfellow 牵头组织的 NIPS 2017 对抗样本攻防竞赛、2018 DEFCON CAAD CTF 对抗攻防赛等。其中,在 NIPS 2017 对抗样本攻防竞赛,朱军教授团队包揽全部三个项目的冠军。

2020 年,清华大学人工智能研究院研发并开源了 AI 对抗安全算法平台 ARES(Adversarial Robustness Evaluation for Safety)。这是一个用于对抗机器学习研究的 Python 库,致力于对图像分类任务上不同模型的对抗鲁棒性进行准确和全面的基准测试。这个算法平台也是本次发布的 AI 对抗鲁棒测评基准的主要依托。

微信图片_20211205113350.jpg



在该基准测试中,研究者将 16 种防御模型(CIFAR-10 和 ImageNet 数据集上各占一半)和 15 种攻击方法用于对抗鲁棒性评估。下图(上)为防御模型,图(下)为攻击方法(其中 FGSM、BIM 和 MIM 分别采用了白盒和基于迁移的攻击)。该基准测试汇集了当前主流和代表性的对抗攻击和防御算法,论文也入选了 CVPR 2020 Oral。

微信图片_20211205113354.jpg


除了数十种典型的攻防算法之外,本次发布的 AI 安全排行榜也包括了刚刚结束的 CVPR 2021 人工智能攻防竞赛中诞生的排名前 5 代表队的攻击算法。此次竞赛吸引到了全球 2000 多支代表队提交最新算法,选手基于 ARES 平台提交攻击算法,对已有对抗防御模型进行准确的鲁棒性测试,进一步提升了该安全基准的科学性和可信性。

微信图片_20211205113403.jpg

CVPR 2021 人工智能攻防竞赛中「赛道 1 防御模型白盒对抗攻击」排名前 5 的队伍。

因此,基于前期研究成果以及 CVPR 2021 人工智能攻防竞赛中提交的算法,清华大学联合阿里安全、RealAI 发布了最新的 AI 对抗鲁棒性测评基准平台。完整时间线如下:

微信图片_20211205113406.jpg


RealAI 副总裁唐家渝表示:「该基准评测平台利用典型的攻防算法和 CVPR 2021 比赛积累的多个性能优越的算法进行互相评估,代表当前安全与稳定性测量的国际标准。」

清华、阿里安全和 RealAI 三方均强调,该基准评测平台不是专属于某一家机构或者公司搭建的平台,需要工业界和学术界的共同参与才能把它打造为真正受认可的全面、权威的 AI 安全评估平台。因此,三方将联合不断在排行榜中注入新的攻击和防御算法,并且欢迎学术界和产业界的团队通过 ARES 平台提交新的攻防模型

该平台的发布对工业界和学术界都能带来正面的影响,比如工业界可以使用该平台评估目前 AI 服务的安全性,发现模型的安全漏洞。同时,也可为学术界提供一个全面、客观、公平、科学的行业标准,推动整个学术界在 AI 对抗攻防领域的快速发展。

相关文章
|
3月前
|
Kubernetes 测试技术 Perl
混沌测试平台 Chaos Mesh
混沌测试平台 Chaos Mesh
103 1
|
4天前
|
监控 安全 测试技术
构建高效的精准测试平台:设计与实现指南
在软件开发过程中,精准测试是确保产品质量和性能的关键环节。一个精准的测试平台能够自动化测试流程,提高测试效率,缩短测试周期,并提供准确的测试结果。本文将分享如何设计和实现一个精准测试平台,从需求分析到技术选型,再到具体的实现步骤。
28 1
|
22天前
|
机器学习/深度学习 人工智能 算法
"拥抱AI规模化浪潮:从数据到算法,解锁未来无限可能,你准备好迎接这场技术革命了吗?"
【10月更文挑战第14天】本文探讨了AI规模化的重要性和挑战,涵盖数据、算法、算力和应用场景等方面。通过使用Python和TensorFlow的示例代码,展示了如何训练并应用一个基本的AI模型进行图像分类,强调了AI规模化在各行业的广泛应用前景。
27 5
|
22天前
|
人工智能 监控 测试技术
云应用开发平台测试
云应用开发平台测试
37 2
|
4天前
|
监控 安全 测试技术
构建高效精准测试平台:设计与实现全攻略
在软件开发过程中,精准测试是确保产品质量的关键环节。一个高效、精准的测试平台能够自动化测试流程,提高测试覆盖率,缩短测试周期。本文将分享如何设计和实现一个精准测试平台,从需求分析到技术选型,再到具体的实现步骤。
24 0
|
28天前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
53 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
1月前
|
机器学习/深度学习 人工智能 开发框架
【AI系统】AI 学习方法与算法现状
在人工智能的历史长河中,我们见证了从规则驱动系统到现代机器学习模型的转变。AI的学习方法基于深度神经网络,通过前向传播、反向传播和梯度更新不断优化权重,实现从训练到推理的过程。当前,AI算法如CNN、RNN、GNN和GAN等在各自领域取得突破,推动技术进步的同时也带来了更大的挑战,要求算法工程师与系统设计师紧密合作,共同拓展AI技术的边界。
70 1
|
24天前
|
人工智能 算法 前端开发
无界批发零售定义及无界AI算法,打破传统壁垒,累积数据流量
“无界批发与零售”是一种结合了批发与零售的商业模式,通过后端逻辑、数据库设计和前端用户界面实现。该模式支持用户注册、登录、商品管理、订单处理、批发与零售功能,并根据用户行为计算信用等级,确保交易安全与高效。
|
24天前
|
人工智能 算法 JavaScript
无界SaaS与AI算力算法,链接裂变万企万商万物互联
本文介绍了一种基于无界SaaS与AI算力算法的商业模式的技术实现方案,涵盖前端、后端、数据库及AI算法等关键部分。通过React.js构建用户界面,Node.js与Express搭建后端服务,MongoDB存储数据,TensorFlow实现AI功能。提供了项目结构、代码示例及部署建议,强调了安全性、可扩展性和性能优化的重要性。
|
3月前
|
机器学习/深度学习 人工智能 算法
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
本文全面介绍了人工智能(AI)的基础知识、操作教程、算法实现及其在实际项目中的应用。首先,从AI的概念出发,解释了AI如何使机器具备学习、思考、决策和交流的能力,并列举了日常生活中的常见应用场景,如手机助手、推荐系统、自动驾驶等。接着,详细介绍了AI在提高效率、增强用户体验、促进技术创新和解决复杂问题等方面的显著作用,同时展望了AI的未来发展趋势,包括自我学习能力的提升、人机协作的增强、伦理法规的完善以及行业垂直化应用的拓展等...
177 3
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
下一篇
无影云桌面