AlphaStar被职业玩家戏耍:在星际2上,人工智能无计可施

简介: 今年 1 月,谷歌旗下人工智能科技公司 DeepMind 的「星际争霸 2」人工智能 AlphaStar 曾与人类职业玩家展开了现场对决,并遗憾落败。7 个多月过去了,AI 在「星际争霸」上有什么进展?它现在能否像 DeepMind 所宣称的那样达到职业水平?

为了提高人工智能水平,DeepMind 与暴雪在战网天梯中开放了 AlphaStar:玩家只要进行申请并通过就可以和这个最强 AI 进行在线对决了。而且现在,AlphaStar 已经可以使用全部三个种族。


然而,与围棋人工智能 AlphaGo 走过的轨迹完全不同,在几个月的发展之后,人工智能的游戏似乎完全没有长进,反而是各路人类玩家获得了经验:他们找到了各种各样「戏耍」AI 的方法。


我们找到了 AlphaStar 近期人机大战录像中的三个:

1638367067(1).png

点击链接查看

在两场神族对战虫族的比赛中,AlphaStar(P)面对目前全球排名第 50 的 Bly(Z),从头到尾毫无还手之力。


首先是第一场:相比此前和 AlphaStar 交手的 LiquidTLO,虫族选手 Bly 更加年长一些——他是一名从魔兽争霸 3 转型的星际 2 选手,已年过 30。然而,在两场比赛中人类玩家使用简单的单矿 Rush 战术获得了几乎相同的胜利。人们纷纷表示:AI 最近的发展似乎仅限于「学会了在聊天频道里发表情」。


1638367167(1).png

点击链接查看

AlphaStar 的人族实力如何?在对战全球排名第 3 的 Neeb(神族)时,AlphaStar 的表现。


可以看到,虽然 AI 在使用人族时已经学会了使用女妖和死神对敌人进行骚扰,但在正面进攻不利,又被 Neeb 偷家的情况下还是败下阵来,整场比赛用时 13 分钟。

1638367303.png

点击链接查看

这可能是目前最为高端的「人机大战」了:AlphaStar vs Serral。


DeepMind 当然也找来了目前星际争霸 2 最强的玩家,芬兰虫族选手 Serral 进行了人机对决。在这场 16 分钟的比赛里,Serral 和 AI 进行了正面的硬碰硬战斗。然而看起来在这种比赛里任何一方出现短板就会造成最终的失利。有评论表示:看起来 Serral 比 AlphaStar 更像是 AI。


以下引用一位网友对比赛的深度解读:


更糟糕的是,人类玩家似乎找到了对抗 AlphaStar 的方法。 但现在,DeepMind 频繁地更改自己的账号,使得它们更加难以追踪。 从比赛中可以看出智能体(agent)具有几点特征:


1. 在对抗人类玩家上实现了巨大飞跃,但它依然无法真正理解游戏概念; 2. 未能对大量常见游戏策略做出适时回应; 3. 无法在比赛中根据人类对手做出调整,始终坚持设定的游戏脚本; 4. 除了人族外,其他智能体在宏观和微观行动中表现出了娴熟的技能,但在建筑物走位方面存在困难,经常将己方单位锁在基地内; 5. 在人族游戏中表现最差,虫族表现最佳(有争议); 6. 在虫族游戏中策略最为单调。


DeepMind《星际争霸 2》AI 对抗人类玩家的发展历程


星际争霸 2 是人类游戏史上最困难、最成功的即时战略游戏,这一系列游戏的历史已经超过 20 年。星际争霸长盛不衰的部分原因在于其丰富的多层次游戏机制,对于人工智能研究来说,这是一个非常接近现实世界的虚拟环境。


星际争霸拥有平衡的游戏规则,以及诸多信息和需要控制的变量。此外,一场比赛的时间通常为几分钟到一小时不等,这意味着游戏中提早执行的操作也许会很长时间不见成效。最后,由于战争迷雾的存在,地图对于玩家只有部分显示,这意味着智能体必须结合记忆与规划才能成功。


2017 年,DeepMind 宣布开始研究打即时战略游戏《星际争霸 2》的人工智能。


2018 年 12 月 10 日,AlphaStar 击败了 DeepMind 公司里的最强玩家 Dani Yogatama;到了 12 月 12 日,AlphaStar 已经可以 5:0 击败职业玩家 TLO 了(虽然 TLO 是虫族玩家,但解说们认为他在游戏中的表现大概能有 5000 分水平);又过了一个星期,12 月 19 日,AlphaStar 同样以 5:0 的比分击败了职业玩家 MaNa。


那么 AlphaStar 是如何学会打《星际争霸 2》的呢?


AlphaStar 的行为是由一种深度神经网络生成的,该网络从原数据界面(单位列表与它们的特性)接收输入数据,输出构成游戏内行为的指令序列。具体来说,该神经网络在单元中使用了一个 transformer 作为躯干,结合了一个深度 LSTM 核、一个带有 pointer 网络的自动回归策略 head 以及一个中心价值基线。


AlphaStar 也使用到了全新的多智能体学习算法。神经网络最初通过暴雪公开的匿名人类游戏视频以监督学习进行训练。这让 AlphaStar 能够通过模仿进行学习天梯玩家的基础微操与宏观操作策略。
微信图片_20211201220206.jpg

AlphaStar 联盟。最初是通过人类玩家的游戏回放视频进行训练,然后与其他对手对抗训练。每次迭代就匹配新的对手,冻结原来的对手,匹配对手的概率和超参数决定了每个智能体采用的的学习目标函数,保留多样性的同时增加难度。智能体的参数通过强化学习进行更新。最终的智能体采样自联盟的纳什分布(没有更换)。微信图片_20211201220209.jpg

随着自我博弈的进行,AlphaStar 逐渐开发出了越来越成熟的战术。DeepMind 表示,这一过程和人类玩家发现战术的过程类似:新的战术不断击败旧的战术。

DeepMind AlphaStar 现场首秀落败于人类玩家 MaNa


今年 1 月,DeepMind 的 AlphaStar 终于首次在世人面前亮相。但在对阵人类职业玩家、前 WCS 亚军 MaNa 的一场现场比赛中,人工智能却被人类「狡诈」的战术迷惑,遗憾落败。微信图片_20211201220212.jpg

在几场展示 AI 实力的 Replay 铺垫之后,AlphaStar 现场比赛却输了。面对刚刚从电脑前起身的 MaNa,DeepMind 的两位科学家 David Sliver 与 Oriol Vinyals 只能露出尴尬的微笑。


在这场比赛中,AI 的一个缺陷暴露出来:除了特定的分兵战术,智能体并没有形成灵活的兵力分配概念。MaNa 采取的策略是:棱镜带着两不朽在 AI 的基地不停骚扰,AlphaStar 一旦回防立刻飞走,等 AI 兵力出门又立刻继续骚扰。因此,面对 MaNa 灵活的出兵策略,AlphaStar 只能被动应战,因而也无法形成对 MaNa 的有效进攻,也导致了最终的落败。


毫无疑问,作为人工智能领先技术的研究机构,DeepMind 的 AlphaGo 和 AlphaFold 等项目不仅引发了全球对于人工智能技术的关注热潮,同时也为新技术在一些领域的落地找到了方向。然而在星际争霸 2 上,人工智能遭遇了前所未有的挑战,不断烧钱的 DeepMind 能否最终找到解决之道?


相关文章
|
7月前
|
人工智能 架构师 算法
人工智能+:职业价值的重构与技能升级
当“人工智能+”成为产业升级标配,职业价值正被重新定义。这并非简单岗位替代,而是人机协作新模式的诞生。AI接管重复性任务后,从业者可专注创造性活动,职业“含人量”不降反升。未来高价值岗位集中在技术赋能、场景创新与价值监督三层面,需跨界人才、流程架构师及伦理师等新角色。把握机遇需重构学习逻辑,强化人机协作实训与伦理素养,发展放大人类独特性的能力,构建不可替代的“人类+”优势。
|
7月前
|
人工智能 搜索推荐 算法
人工智能+:职业技能培训的元命题与能力重构
本文探讨“人工智能+”时代职业技能培训的核心命题,强调在技术赋能前需明确人与AI的能力边界。培训应聚焦三大方向:一是定位人机协同的底层逻辑,认清人类独特价值;二是培养价值判断力,避免盲目应用技术;三是重构能力模型,强化架构思维、批判性使用能力和持续进化能力。最终目标是培养“人类首席官”,成为技术生态中清醒的价值主导者,实现从认知到行动的闭环转化。
|
7月前
|
人工智能 算法
我国“AI+X”跨界人才培养:如何通过职业技能培训,把握人工智能就业机遇?
在“AI+X”时代,人工智能与各行业的深度融合正在重塑职业图景和人才标准。跨界能力成为核心竞争力,要求从业者既能将专业问题转化为AI可理解的框架,又能将技术输出转化为实际业务价值。这推动了职业技能培训从单一技术传授向复合能力培养转型,强调知识架构重组、场景化学习和伦理判断力培养。个人发展需构建“认知-实践-认证”的闭环路径,持续更新技能以适应快速迭代的技术环境。未来属于既懂行业本质又能驾驭技术的跨界者,他们将成为推动社会进步的关键力量。职业技能培训的使命在于赋能学习者,在技术与人文之间找到平衡,实现从专业从业者到领域创新者的蜕变。
|
7月前
|
机器学习/深度学习 人工智能 搜索推荐
什么叫生成式人工智能?职业技能的范式转移与能力重构
生成式人工智能(Generative AI)是AI领域的重要分支,其核心在于通过学习数据分布生成新内容,如文本、图像、音乐等。与传统判别式模型不同,生成式AI基于深度学习技术(如Transformer架构),展现出“创造力”,但其本质仍是概率计算的结果。它正在重塑内容创作、编程、设计等多个职业领域,推动职业技能的范式转移。 掌握生成式AI需要理解其技术原理、能力边界及伦理挑战。职业技能培训应聚焦提示设计、结果评估和混合创作三大能力,帮助从业者在人机协作中发挥主导作用。未来,生成式AI将向多模态、个性化发展,而人类的独特价值在于为技术注入人文关怀与道德框架。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
AI时代职业新风口:调研报告揭示57.2%受访者向往AI领域,生成式人工智能(GAI)认证成职场新宠
人工智能(AI)正成为职场新宠,57.2%受访者考虑从事相关职业。AI领域不仅薪资优厚、前景广阔,还充满创新挑战。生成式人工智能(GAI)认证逐渐成为衡量AI技能的重要标准,助力求职者掌握核心知识、提升实战能力及增强合规意识。面对AI时代的机遇与挑战,持续学习、关注行业动态和拓展人脉将成为职场竞争的关键。让我们共同迎接AI带来的美好未来!
|
9月前
|
人工智能 自动驾驶 算法
人工智能引发的新文明冲击:未来十年消失的职业!
在21世纪科技浪潮中,人工智能(AI)正以前所未有的速度改变生活方式和工作模式。未来十年内,预计30种传统职业如流水线工人、仓库拣货员、收银员等将逐渐消失,带来前所未有的挑战与机遇。本文探讨这一趋势,分析受影响的职业,并讨论人类如何在AI时代找到新定位。通过GAI认证提升技能,把握AI时代的机遇,共创辉煌未来。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
2025人工智能职场报告:57.2%的职场人考虑从事AI类职业,生成式人工智能(GAI)认证如何重构职业价值坐标系
人工智能(AI)已成为21世纪最具变革性的力量之一,尤其生成式人工智能(GAI)认证正重构职业价值坐标系。数据显示,57.2%的职场人愿从事AI相关职业,凸显其吸引力。GAI认证不仅提升个人竞争力、拓宽职业道路,还增强职业认同感,助力企业在人才选拔中更精准高效。面对机遇,职场人需明确目标、结合实践、持续学习,以适应快速发展的AI领域,为企业与个人发展奠定坚实基础。
|
9月前
|
人工智能 自动驾驶 安全
“AI +”岗位热潮下,生成式人工智能认证开启职业新篇
随着“AI+”岗位的兴起,人工智能技能成为就业市场热门需求。清华大学春招现场显示,众多企业增加AI相关岗位,如自动驾驶、AI技术专家等,反映行业强劲趋势。生成式人工智能认证(GAI认证)由培生推出,涵盖AI技术、伦理与法律等方面,助力求职者提升竞争力。通过学习GAI课程,学员可掌握主流AI工具使用方法,适应职业新需求。认证获Mindstone认可,内容贴合实际应用,为个人职业发展提供有力支持。
|
机器学习/深度学习 人工智能 自动驾驶
人工智能浪潮下的未来职业图景
随着人工智能技术的飞速发展,未来的职场将呈现出前所未有的变化。从自动化取代重复性劳动到创造全新的行业岗位,AI的介入正逐步重塑我们对工作的认知和期待。本文将探讨AI技术如何影响职业发展的趋势,以及我们应如何准备迎接这一变革。
353 40
|
人工智能
AIGC人工智能涉及三十六职业,看看有没有你的职业(二)
AIGC人工智能涉及三十六职业,看看有没有你的职业(二)
119 1

热门文章

最新文章