MySQL 5.7下InnoDB对COUNT(*)的优化

简介: MySQL 5.7下InnoDB对COUNT(*)的优化

0、导读

饱受诟病的InnoDB表COUNT(*)性能问题在5.7下做了优化,果真如此吗?

1、经典需求:InnoDB表COUNT(*)

InnoDB引擎表经常被抱怨执行COUNT(*)的效率太差,因此此类需求通常会被建议用其他方法来满足,比如另外加一个计数器表,或者用SHOW TABLE STATUS查看大概数量。

不过,从MySQL 5.7.2起,这个问题得到了解决,我们来看看。

2、MySQL 5.7版本InnoDB对COUNT(*)的优化

MySQL每发布一个新版本,都会放出相应的Release Notes,我们注意到5.7.2版本的发布说明中提到:

InnoDB: SELECT COUNT(*) FROM t statements now invoke a single handler call to the storage engine to scan the clustered index and return the row count to the Optimizer. Previously, a row count was typically performed by traversing a smaller secondary index and invoking a handler call for each record. A single handler call to the storage engine to count rows in the clustered index generally improves SELECT COUNT(*) FROM t performance. However, in the case of a large clustered index and a significantly smaller secondary index, performance degradation is possible compared to performance using the previous, non-optimized implementation. For more information, see Limits on InnoDB Tables.

简单地说就是:COUNT(*)会选择聚集索引,进行一次内部handler函数调用,即可快速获得该表总数。我们可以通过执行计划看到这个变化,例如:

image.png

很明显,在查询优化器阶段就已经得到优化了,相比效率应该杠杠的吧,我们稍后再来对比看看。

补充说下,5.7以前的版本中,COUNT(*)请求通常是:扫描普通索引来获得这个总数。也来看看5.6下的执行计划是怎样的:

image.png

可以看到,可以利用覆盖索引来完成COUNT(*)请求。

3、对比测试

先看一组测试数据:

count(*)对比测试

MySQL 5.6.33

MySQL 5.7.15

相差

表数据量

8976914

9000270

100.26%

耗时(秒)

5.459952

1.142340

20.92%

可以看到,两次数据量相当,但SQL耗时5.7约只有5.6的1/5,这个效率还是不错的吧。

我们来看看5.6和5.7版本下的status和profiling对比情况:

image.png

4、别高兴得太早

看完上面的对比测试,相信您已经心动了吧,但还别高兴得太早哦,官方文档里其实埋了一个伏笔:

InnoDB: SELECT COUNT(*) FROM t statements now invoke a single handler call to the storage engine to scan the clustered index and return the row count to the Optimizer. Previously, a row count was typically performed by traversing a smaller secondary index and invoking a handler call for each record. A single handler call to the storage engine to count rows in the clustered index generally improves SELECT COUNT(*) FROM t performance. However, in the case of a large clustered index and a significantly smaller secondary index, performance degradation is possible compared to performance using the previous, non-optimized implementation. For more information, see Limits on InnoDB Tables.

简言之,就是说如果聚集索引较大(或者说表数据量较大),没有完全加载到buffer pool中的话,有可能反而会更慢,还不如用原先的方式。

下面我们来测试下,读取tpcc测试表stock,该表有1亿行记录,表空间文件约65GB,而innodb buffer pool只分配了12G,这时候再看下对比数据:

count(*)对比测试

MySQL 5.6.33

MySQL 5.7.15

相差

表数据量

1亿

1亿

0.00%

耗时(秒)

693.66

5331.69

768.63%

在这种情况下,5.7版本反而慢的夸张,悲剧啊~

那么在5.7下的大表,有没有办法仍旧采用以前的方法来做COUNT(*)统计呢。当然可以了,我们可以强制指定普通索引,不过还需要加上WHERE条件,否则还是不行。后来搜了下,发现这是个bug,印风(zhaiwx)已经报告给官方了,bug id:81854。

image.png

这次的SQL执行耗时和在5.6下的就基本一样了。

4、后记

5.7版本整体挺赞的,不过还是有不少地方需要完善,期待能更成熟起来。

参考

1. MySQL 5.7.2 Release Notes:http://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-2.html

2. Limits on InnoDB Tableshttp://dev.mysql.com/doc/refman/5.7/en/innodb-restrictions.html



相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
3月前
|
存储 关系型数据库 MySQL
介绍MySQL的InnoDB引擎特性
总结而言 , Inno DB 引搞 是 MySQL 中 高 性 能 , 高 可靠 的 存 储选项 , 宽泛 应用于要求强 复杂交易处理场景 。
155 15
|
8月前
|
存储 网络协议 关系型数据库
MySQL8.4创建keyring给InnoDB表进行静态数据加密
MySQL8.4创建keyring给InnoDB表进行静态数据加密
280 1
|
12月前
|
存储 缓存 关系型数据库
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
2021 57
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
|
8月前
|
SQL 缓存 关系型数据库
使用温InnoDB缓冲池启动MySQL测试
使用温InnoDB缓冲池启动MySQL测试
154 0
|
12月前
|
存储 关系型数据库 MySQL
“COUNT(*) MyISAM比InnoDB更快”是误解
在我印象中,MyISAM的查询速度比InnoDB快,但根据MySQL官网文章,从5.7版本开始,InnoDB性能大幅提升,在8.0中持续优化。InnoDB提供更好的性能、可靠性和可扩展性,支持ACID事务、行级锁定、崩溃恢复等特性,成为现代应用的默认选择。尤其在高可用性和灾难恢复方面,InnoDB是唯一选择。云服务也普遍不支持MyISAM。因此,建议使用MyISAM的用户尽早迁移到InnoDB以获得更佳性能和可靠性。
232 11
|
12月前
|
存储 关系型数据库 MySQL
MySQL存储引擎详述:InnoDB为何胜出?
MySQL 是最流行的开源关系型数据库之一,其存储引擎设计是其高效灵活的关键。InnoDB 作为默认存储引擎,支持事务、行级锁和外键约束,适用于高并发读写和数据完整性要求高的场景;而 MyISAM 不支持事务,适合读密集且对事务要求不高的应用。根据不同需求选择合适的存储引擎至关重要,官方推荐大多数场景使用 InnoDB。
538 7
|
3月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
162 3
|
3月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
3月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
800 152
|
3月前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。