2.2 变量
2.1.1 变量的概念
既能读又能写的内存对象,称为变量;
若一旦初始化后不能修改的对象则称为常量。
变量定义形式: 类型 标识符, 标识符, … , 标识符
2.1.2 变量名的本质
变量名的本质:一段连续内存空间的别名;
程序通过变量来申请和命名内存空间 int a = 0;
通过变量名访问内存空间;
不是向变量名读写数据,而是向变量所代表的内存空间中读写数据;
修改变量的两种方式:
void test(){ int a = 10; //1. 直接修改 a = 20; printf("直接修改,a:%d\n",a); //2. 间接修改 int* p = &a; *p = 30; printf("间接修改,a:%d\n", a); }
2.3 程序的内存分区模型
2.3.1 内存分区
2.3.1.1 运行之前
我们要想执行我们编写的c程序,那么第一步需要对这个程序进行编译。 1)预处理:宏定义展开、头文件展开、条件编译,这里并不会检查语法
2)编译:检查语法,将预处理后文件编译生成汇编文件
3)汇编:将汇编文件生成目标文件(二进制文件)
4)链接:将目标文件链接为可执行程序
代码区
存放 CPU 执行的机器指令。通常代码区是可共享的(即另外的执行程序可以调用它),使其可共享的目的是对于频繁被执行的程序,只需要在内存中有一份代码即可。代码区通常是只读的,使其只读的原因是防止程序意外地修改了它的指t令。另外,代码区还规划了局部变量的相关信息。
全局初始化数据区/静态数据区(data段)
该区包含了在程序中明确被初始化的全局变量、已经初始化的静态变量(包括全局静态变量和t)和常量数据(如字符串常量)。
未初始化数据区(又叫 bss 区)
存入的是全局未初始化变量和未初始化静态变量。未初始化数据区的数据在程序开始执行之前被内核初始化为 0 或者空(NULL)。
总体来讲说,程序源代码被编译之后主要分成两种段:程序指令(代码区)和程序数据(数据区)。代码段属于程序指令,而数据域段和.bss段属于程序数据。
那为什么把程序的指令和程序数据分开呢?
程序被load到内存中之后,可以将数据和代码分别映射到两个内存区域。由于数据区域对进程来说是可读可写的,而指令区域对程序来讲说是只读的,所以分区之后呢,可以将程序指令区域和数据区域分别设置成可读可写或只读。这样可以防止程序的指令有意或者无意被修改;
当系统中运行着多个同样的程序的时候,这些程序执行的指令都是一样的,所以只需要内存中保存一份程序的指令就可以了,只是每一个程序运行中数据不一样而已,这样可以节省大量的内存。比如说之前的Windows Internet Explorer 7.0运行起来之后, 它需要占用112 844KB的内存,它的私有部分数据有大概15 944KB,也就是说有96 900KB空间是共享的,如果程序中运行了几百个这样的进程,可以想象共享的方法可以节省大量的内存。
2.3.1.1 运行之后
程序在加载到内存前,代码区和全局区(data和bss)的大小就是固定的,程序运行期间不能改变。然后,运行可执行程序,操作系统把物理硬盘程序load(加载)到内存,除了根据可执行程序的信息分出代码区(text)、数据区(data)和未初始化数据区(bss)之外,还额外增加了栈区、堆区。
代码区(text segment)
加载的是可执行文件代码段,所有的可执行代码都加载到代码区,这块内存是不可以在运行期间修改的。
未初始化数据区(BSS)
加载的是可执行文件BSS段,位置可以分开亦可以紧靠数据段,存储于数据段的数据(全局未初始化,静态未初始化数据)的生存周期为整个程序运行过程。
全局初始化数据区/静态数据区(data segment)
加载的是可执行文件数据段,存储于数据段(全局初始化,静态初始化数据,文字常量(只读))的数据的生存周期为整个程序运行过程。
栈区(stack)
栈是一种先进后出的内存结构,由编译器自动分配释放,存放函数的参数值、返回值、局部变量等。在程序运行过程中实时加载和释放,因此,局部变量的生存周期为申请到释放该段栈空间。
堆区(heap)
堆是一个大容器,它的容量要远远大于栈,但没有栈那样先进后出的顺序。用于动态内存分配。堆在内存中位于BSS区和栈区之间。一般由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收。
2.3.2 分区模型
2.3.2.1 栈区
由系统进行内存的管理。主要存放函数的参数以及局部变量。在函数完成执行,系统自行释放栈区内存,不需要用户管理。
#char* func(){ char p[] = "hello world!"; //在栈区存储 乱码 printf("%s\n", p); return p; } void test(){ char* p = NULL; p = func(); printf("%s\n",p); }
2.3.2.2 堆区
由编程人员手动申请,手动释放,若不手动释放,程序结束后由系统回收,生命周期是整个程序运行期间。使用malloc或者new进行堆的申请。
char* func(){ char* str = malloc(100); strcpy(str, "hello world!"); printf("%s\n",str); return str; } void test01(){ char* p = NULL; p = func(); printf("%s\n",p); } void allocateSpace(char* p){ p = malloc(100); strcpy(p, "hello world!"); printf("%s\n", p); } void test02(){ char* p = NULL; allocateSpace(p); printf("%s\n", p); }
堆分配内存API:
#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);
功能:
在内存动态存储区中分配nmemb块长度为size字节的连续区域。calloc自动将分配的内存 置0。
参数:
nmemb:所需内存单元数量 size:每个内存单元的大小(单位:字节)
返回值:
成功:分配空间的起始地址
失败:NULL
#include <stdlib.h>
void *realloc(void *ptr, size_t size);
功能:
重新分配用malloc或者calloc函数在堆中分配内存空间的大小。 realloc不会自动清理增加的内存,需要手动清理,如果指定的地址后面有连续的空间,那么就会在已有地址基础上增加内存,如果指定的地址后面没有空间,那么realloc会重新分配新的连续内存,把旧内存的值拷贝到新内存,同时释放旧内存。
参数:
ptr:为之前用malloc或者calloc分配的内存地址,如果此参数等于NULL,那么和realloc与malloc功能一致
size:为重新分配内存的大小, 单位:字节
返回值:
成功:新分配的堆内存地址
失败:NULL
void test01(){ int* p1 = calloc(10,sizeof(int)); if (p1 == NULL){ return; } for (int i = 0; i < 10; i ++){ p1[i] = i + 1; } for (int i = 0; i < 10; i++){ printf("%d ",p1[i]); } printf("\n"); free(p1); } void test02(){ int* p1 = calloc(10, sizeof(int)); if (p1 == NULL){ return; } for (int i = 0; i < 10; i++){ p1[i] = i + 1; } int* p2 = realloc(p1, 15 * sizeof(int)); if (p2 == NULL){ return; } printf("%d\n", p1); printf("%d\n", p2); //打印 for (int i = 0; i < 15; i++){ printf("%d ", p2[i]); } printf("\n"); //重新赋值 for (int i = 0; i < 15; i++){ p2[i] = i + 1; } //再次打印 for (int i = 0; i < 15; i++){ printf("%d ", p2[i]); } printf("\n"); free(p2); }