C语言未定义行为一览

简介: 几周前,我的一位同事带着一个编程问题来到我桌前。最近我们一直在互相考问C语言的知识,所以我微笑着鼓起勇气面对无疑即将到来的地狱。

几周前,我的一位同事带着一个编程问题来到我桌前。最近我们一直在互相考问C语言的知识,所以我微笑着鼓起勇气面对无疑即将到来的地狱。


他在白板上写了几行代码,并问这个程序会输出什么?

#include<stdio.h>

intmain(){

   int i = 0;

   int a[] = {10,20,30};

   int r = 1 * a[i++] + 2 * a[i++] + 3 * a[i++];

   printf("%d\n", r);

   return0;

}

看上去相当简单明了。我解释了操作符的优先顺序——后缀操作比乘法先计算、乘法比加法先计算,并且乘法和加法的结合性都是从左到右,于是我抓出运算符号并开始写出算式。

int r = 1 * a[i++] + 2 * a[i++] + 3 * a[i++];

//    =    a[0]    + 2 * a[1]  + 3 * a[2];

//    =     10    +     40   +    90;

//    = 140

我自鸣得意地写下答案后,我的同事回应了一个简单的“不”。我想了几分钟后,还是被难住了。我不太记得后缀操作符的结合顺序了。此外,我知道那个顺序甚至不会改变这里的值计算的顺序,因为结合规则只会应用于同级的操作符之间。但我想到了应该根据后缀操作符都从右到左求值的规则,尝试算一遍这条算式。看上去相当简单明了。

int r = 1 * a[i++] + 2 * a[i++] + 3 * a[i++];

//    =    a[2]    + 2 * a[1]  + 3 * a[0];

//    =     30    +     40   +    30;

//    = 100

我的同事再一次回答说,答案仍是错的。这时候我只好认输了,问他答案是什么。这段短小的样例代码原来是从他写过的更大的代码段里删减出来的。为了验证他的问题,他编译并且运行了那个更大的代码样例,但是惊奇地发现那段代码没有按照他预想的运行。他删减了不需要的步骤后得到了上面的样例代码,用gcc 4.7.3编译了这段样例代码,结果输出了令人吃惊的结果:“60”。


这时我被迷住了。我记得,C语言里,函数参数的计算求值顺序是未定义的,所以我们以为后缀操作符只是遵照某个随机的、而非从左至右的顺序,计算的。我们仍然确信后缀比加法和乘法拥有更高的操作优先级,所以很快证明我们自己,不存在我们可以计算i++的顺序,使得这三个数组元素一起加起来、乘起来得到60。


现在我已对此入迷了。我的第一个想法是,查看这段代码的反汇编代码,然后尝试查出它实际上发生了什么。我用调试符号(debugging symbols)编译了这段样例代码,用了objdump后很快得到了带注释的x86_64反汇编代码。

Disassembly of section .text:

0000000000000000 <main>:

#include <stdio.h>

int main(){

  0:   55                      push   %rbp

  1:   4889 e5                mov    %rsp,%rbp

  4:   4883 ec 20             sub    $0x20,%rsp

   inti = 0;

  8:   c7 45 e8 00000000    movl   $0x0,-0x18(%rbp)

   int a[] = {10,20,30};

  f:   c7 45 f0 0a 000000    movl   $0xa,-0x10(%rbp)

 16:   c7 45 f4 14000000    movl   $0x14,-0xc(%rbp)

 1d:   c7 45 f8 1e 000000    movl   $0x1e,-0x8(%rbp)

   int r = 1 * a[i++] + 2 * a[i++] + 3 * a[i++];

 24:   8b 45 e8                mov    -0x18(%rbp),%eax

 27:   4898                   cltq  

 29:   8b 5485 f0             mov    -0x10(%rbp,%rax,4),%edx

 2d:   8b 45 e8                mov    -0x18(%rbp),%eax

 30:   4898                   cltq  

 32:   8b 4485 f0             mov    -0x10(%rbp,%rax,4),%eax

 36:   01 c0                   add    %eax,%eax

 38:   8d 0c 02                lea    (%rdx,%rax,1),%ecx

 3b:   8b 45 e8                mov    -0x18(%rbp),%eax

 3e:   4898                   cltq  

 40:   8b 5485 f0             mov    -0x10(%rbp,%rax,4),%edx

 44:   89 d0                   mov    %edx,%eax

 46:   01 c0                   add    %eax,%eax

 48:   01 d0                   add    %edx,%eax

 4a:   01 c8                   add    %ecx,%eax

 4c:   8945 ec                mov    %eax,-0x14(%rbp)

 4f:   8345 e8 01             addl   $0x1,-0x18(%rbp)

 53:   8345 e8 01             addl   $0x1,-0x18(%rbp)

 57:   8345 e8 01             addl   $0x1,-0x18(%rbp)

   printf("%d\n", r);

 5b:   8b 45 ec                mov    -0x14(%rbp),%eax

 5e:   89 c6                   mov    %eax,%esi

 60:   bf 00000000          mov    $0x0,%edi

 65:   b8 00000000          mov    $0x0,%eax

 6a:   e8 00000000          callq  6f <main+0x6f>

   return0;

 6f:   b8 00000000          mov    $0x0,%eax

}

 74:   c9                      leaveq

 75:   c3                      retq

最先和最后的几个指令只建立了堆栈结构,初始化变量的值,调用printf函数,还从main函数返回。所以我们实际上只需要关心从0×24到0×57之间的指令。那是令人关注的行为发生的地方。让我们每次查看几个指令。

24:   8b 45 e8                mov    -0x18(%rbp),%eax

27:   4898                   cltq  

29:   8b 5485 f0             mov    -0x10(%rbp,%rax,4),%edx

最先的三个指令与我们预期的一致。首先,它把i(0)的值加载到eax寄存器,带符号扩展到64位,然后加载a[0]到edx寄存器。这里的乘以1的运算(1*)显然被编译器优化后去除了,但是一切看起来都正常。接下来的几个指令开始时也大致相同。

2d:   8b 45 e8                mov    -0x18(%rbp),%eax

30:   4898                   cltq  

32:   8b 4485 f0             mov    -0x10(%rbp,%rax,4),%eax

36:   01 c0                   add    %eax,%eax

38:   8d 0c 02                lea    (%rdx,%rax,1),%ecx

第一个mov指令把i的值(仍然是0)加载进eax寄存器,带符号扩展到64位,然后加载a[0]进eax寄存器。有意思的事情发生了——我们再次期待i++在这三条指令之前已经运行过了,但也许最后两条指令会用某种汇编的魔法来得到预期的结果(2a[1])。这两条指令把eax寄存器的值自加了一次,实际上执行了2a[0]的操作,然后把结果加到前面的计算结果上,并存进ecx寄存器。此时指令已经求得了a[0] + 2 * a[0]的值。事情开始看起来有一些奇怪了,然而再一次,也许某个编译器魔法在发生。

3b:   8b 45 e8                mov    -0x18(%rbp),%eax

3e:   4898                   cltq  

40:   8b 5485 f0             mov    -0x10(%rbp,%rax,4),%edx

44:   89 d0                   mov    %edx,%eax

接下来这些指令开始看上去相当熟悉。他们家在i的值(仍然是0),带符号扩展至64位,加载a[0]?到edx寄存器,然后拷贝edx里的值到eax。嗯,好吧,让我们在多看一些:

46:   01c0                   add    %eax,%eax

48:   01 d0                   add    %edx,%eax

4a:   01c8                   add    %ecx,%eax

4c:   8945 ec                mov    %eax,-0x14(%rbp)

在这里把a[0]自加了3次,再加上之前的计算结果,然后存入到变量“r”。现在不可思议的事情——我们的变量r现在包含了a[0] + 2 * a[0] + 3 * a[0]。足够肯定的是,那就是程序的输出:“60”。但是那些后缀操作符上发生了什么?他们都在最后:

4f:   8345 e8 01             addl   $0x1,-0x18(%rbp)

53:   8345 e8 01             addl   $0x1,-0x18(%rbp)

57:   8345 e8 01             addl   $0x1,-0x18(%rbp)

看上去我们编译版本的代码完全错了!为什么后缀操作符被扔到最底下、所有任务已经完成之后?随着我对现实的信仰减少,我决定直接去看源代码。不,不是编译器的源代码——那只是实现——我抓起了C11语言规范。


这个问题处在后缀操作符的细节。在我们的案例中,我们在单个表达式里对数组下标执行了三次后缀自增。当计算后缀操作符时,它返回变量的初始值。把新的值再分配回变量是一个副作用。结果是,那个副作用只被定义为只被付诸于各顺序点之间。参照标准的5.1.2.3章节,那里定义了顺序点的细节。但在我们的例子中,我们的表达式展示了未定义行为。它完全取决于编译器对于 什么时候 给变量分配新值的副作用会执行 相对于表达式的其他部分。


最终,我俩都学到了一点新的C语言知识。众所周知,最好的应用是避免构造复杂的前缀后缀表达式,这就是一个关于为什么要这样的极好例子。

相关文章
|
1天前
|
算法 C语言
【C语言程序设计——函数】利用函数求解最大公约数和最小公倍数(头歌实践教学平台习题)【合集】
本文档介绍了如何编写两个子函数,分别求任意两个整数的最大公约数和最小公倍数。内容涵盖循环控制与跳转语句的使用、最大公约数的求法(包括辗转相除法和更相减损术),以及基于最大公约数求最小公倍数的方法。通过示例代码和测试说明,帮助读者理解和实现相关算法。最终提供了完整的通关代码及测试结果,确保编程任务的成功完成。
25 15
|
1天前
|
C语言
【C语言程序设计——函数】亲密数判定(头歌实践教学平台习题)【合集】
本文介绍了通过编程实现打印3000以内的全部亲密数的任务。主要内容包括: 1. **任务描述**:实现函数打印3000以内的全部亲密数。 2. **相关知识**: - 循环控制和跳转语句(for、while循环,break、continue语句)的使用。 - 亲密数的概念及历史背景。 - 判断亲密数的方法:计算数A的因子和存于B,再计算B的因子和存于sum,最后比较sum与A是否相等。 3. **编程要求**:根据提示在指定区域内补充代码。 4. **测试说明**:平台对代码进行测试,预期输出如220和284是一组亲密数。 5. **通关代码**:提供了完整的C语言代码实现
36 24
|
1天前
|
存储 算法 C语言
【C语言程序设计——函数】素数判定(头歌实践教学平台习题)【合集】
本内容介绍了编写一个判断素数的子函数的任务,涵盖循环控制与跳转语句、算术运算符(%)、以及素数的概念。任务要求在主函数中输入整数并输出是否为素数的信息。相关知识包括 `for` 和 `while` 循环、`break` 和 `continue` 语句、取余运算符 `%` 的使用及素数定义、分布规律和应用场景。编程要求根据提示补充代码,测试说明提供了输入输出示例,最后给出通关代码和测试结果。 任务核心:编写判断素数的子函数并在主函数中调用,涉及循环结构和条件判断。
37 23
|
1天前
|
存储 编译器 C语言
【C语言程序设计——函数】回文数判定(头歌实践教学平台习题)【合集】
算术运算于 C 语言仿若精密 “齿轮组”,驱动着数值处理流程。编写函数求区间[100,500]中所有的回文数,要求每行打印10个数。根据提示在右侧编辑器Begin--End之间的区域内补充必要的代码。如果操作数是浮点数,在 C 语言中是不允许直接进行。的结果是 -1,因为 -7 除以 3 商为 -2,余数为 -1;注意:每一个数据输出格式为 printf("%4d", i);的结果是 1,因为 7 除以 -3 商为 -2,余数为 1。取余运算要求两个操作数必须是整数类型,包括。开始你的任务吧,祝你成功!
14 1
|
1月前
|
存储 C语言 开发者
【C语言】字符串操作函数详解
这些字符串操作函数在C语言中提供了强大的功能,帮助开发者有效地处理字符串数据。通过对每个函数的详细讲解、示例代码和表格说明,可以更好地理解如何使用这些函数进行各种字符串操作。如果在实际编程中遇到特定的字符串处理需求,可以参考这些函数和示例,灵活运用。
75 10
|
1月前
|
存储 程序员 C语言
【C语言】文件操作函数详解
C语言提供了一组标准库函数来处理文件操作,这些函数定义在 `<stdio.h>` 头文件中。文件操作包括文件的打开、读写、关闭以及文件属性的查询等。以下是常用文件操作函数的详细讲解,包括函数原型、参数说明、返回值说明、示例代码和表格汇总。
58 9
|
1月前
|
存储 Unix Serverless
【C语言】常用函数汇总表
本文总结了C语言中常用的函数,涵盖输入/输出、字符串操作、内存管理、数学运算、时间处理、文件操作及布尔类型等多个方面。每类函数均以表格形式列出其功能和使用示例,便于快速查阅和学习。通过综合示例代码,展示了这些函数的实际应用,帮助读者更好地理解和掌握C语言的基本功能和标准库函数的使用方法。感谢阅读,希望对你有所帮助!
45 8
|
1月前
|
C语言 开发者
【C语言】数学函数详解
在C语言中,数学函数是由标准库 `math.h` 提供的。使用这些函数时,需要包含 `#include <math.h>` 头文件。以下是一些常用的数学函数的详细讲解,包括函数原型、参数说明、返回值说明以及示例代码和表格汇总。
55 6
|
1月前
|
存储 C语言
【C语言】输入/输出函数详解
在C语言中,输入/输出操作是通过标准库函数来实现的。这些函数分为两类:标准输入输出函数和文件输入输出函数。
314 6
|
1月前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
69 6