功能介绍
实际场景中经常需要根据一些常量指标做IN查询,其中IN的字段是分区键。例如在电商场景中,所有订单都会记录到订单表Order,此表按照订单ID进行拆分,一个买家经常会根据已购买的订单列表,查询这些订单的具体信息。假设用户已购买的订单数是2,那么会产生2个值的IN条件查询,理论上查询会路由到两个2分片。查询SQL示例:
SELECT * FROM ORDER WHERE ORDER_ID IN (id1,id2)
随着用户购买的订单数增加,查询订单信息的IN值数量也会增加,这样一次查询很可能会路由到所有的分片,导致RT变高。下图展示了IN值数量、扫描分片数和RT之间的关系。
功能介绍
实际场景中经常需要根据一些常量指标做IN查询,其中IN的字段是分区键。例如在电商场景中,所有订单都会记录到订单表Order,此表按照订单ID进行拆分,一个买家经常会根据已购买的订单列表,查询这些订单的具体信息。假设用户已购买的订单数是2,那么会产生2个值的IN条件查询,理论上查询会路由到两个2分片。查询SQL示例:
SELECT * FROM ORDER WHERE ORDER_ID IN (id1,id2)
随着用户购买的订单数增加,查询订单信息的IN值数量也会增加,这样一次查询很可能会路由到所有的分片,导致RT变高。下图展示了IN值数量、扫描分片数和RT之间的关系。
比对测试
在兼顾RT和吞吐的场景下,确定合理的IN查询的值的数量。在规格2×16C64G的节点,针对一张分表数量为64,分表记录数为百万级别的表在不同值数量、不同并发下做测试。在内核版本5.4.8-16069335(包含)之后针对IN查询进一步完善了动态裁剪分表的能力,下发的物理SQL也会裁剪掉多余的Values,下面是比对测试的结果。
- 在不同并发下,不同Values值数量下测试,开启IN查询动态裁剪能力下,查看RT变化。
- 在不同并发下,不同Values值数量下测试,开启IN查询动态裁剪能力下,查看吞吐变化。
- 在不同并发下,不同Values值数量下测试,关闭IN查询动态裁剪能力下,查看RT变化。
- 在不同并发下,不同Values值数量下测试,关闭IN查询动态裁剪能力下,查看吞吐变化。
- 通过测试对比,可以得到以下结论:
- 兼顾RT和吞吐时,建议IN的值的数量在8~32之间,基本对齐分布式Parallel Query的默认并发度(单节点的CPU内核数)。
- 在内核版本5.4.8-16069335(包含)之后,在开启IN查询的动态裁剪能力下,吞吐和RT都有明显的优势,推荐您将内核版本升级至5.4.8及以上版本。