Linux内核教程(1) - 道路千万条,调试最重要

简介: 学习Linux内核,首要的第一件事情就是搞清楚调试的方法

Linux内核教程(1) - 道路千万条,调试最重要

从信号量说起

大家可能都学过操作系统,在操作系统课上,在进程同步互斥中,图灵奖获得者Dijkstra的信号量Semphone。

Linux中当然也提供了semphone的实现,用做最普通的睡眠锁。所谓睡眠锁,意思是如果有一个任务试图去获取一个被占用的信号量时,会被推到等待队列中,然后让其睡眠。这样CPU资源就可以用来处理别的事情,实现资源的合理利用。这与一直等待的自旋锁形成鲜明的对比。当占有信号量的任务运行结束后,会唤醒队列里等待的任务,这个信号量也会被唤醒的任务占有。
针对于P和V两种原语的Linux实现是down和up两个操作。还有支持被中断的down_interruptible,可被杀的down_killable,不等待的down_trylock,带超时的down_timeout,考虑得非常周到。
不仅如此,信号量也是支持读/写信号量分离的。
一切看起来很美好,不是么?

我们看看semphone的作者在semphone.c的开头是如何写的:

2  /*
3   * Copyright (c) 2008 Intel Corporation
4   * Author: Matthew Wilcox <willy@linux.intel.com>
5   *
6   * This file implements counting semaphores.
7   * A counting semaphore may be acquired 'n' times before sleeping.
8   * See mutex.c for single-acquisition sleeping locks which enforce
9   * rules which allow code to be debugged more easily.
10   */

对于懒得看英文的同学,我简单翻译一下,如果只是获取一次的锁,建议改用mutex.h,这样会使调试更容易。

在Linux kernel中,为了方便调试,基本上每种机制都有自己的调试宏,以CONFIG_DEBUG_*开头。下面是我随便搜的几个:
config_debug.png

比如自旋锁,就有CONFIG_DEBUG_SPINLOCK,打开之后,会增加追踪如下例:

3492  static inline void
3493  prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3494  {
3495      /*
3496       * Since the runqueue lock will be released by the next
3497       * task (which is an invalid locking op but in the case
3498       * of the scheduler it's an obvious special-case), so we
3499       * do an early lockdep release here:
3500       */
3501      rq_unpin_lock(rq, rf);
3502      spin_release(&rq->lock.dep_map, _THIS_IP_);
3503  #ifdef CONFIG_DEBUG_SPINLOCK
3504      /* this is a valid case when another task releases the spinlock */
3505      rq->lock.owner = next;
3506  #endif
3507  }

很不幸,semaphone不支持自动调试宏,连受限的也做不到。
所以,信号量最好的场景是特别复杂的场景,比如跨内核空间和用户空间的复杂交互类的,反正调试也不靠这个。
而对于内核代码中正常的使用,应该使用semaphone的受限版本mutex。
mutex是通过怎样的自律来获取自由的呢:

  • 任何时间,只能有一个任务持有mutex
  • 因为只有一个,所以加锁者必须负责给mutex解锁
  • 因为要负责解锁,所以持有mutex的进程不得退出
  • mutex不得用于中断处理程序,也包括下半部。不了解中断和下半部原理的我们后面会介绍
  • mutex不能复制
  • mutex不能手动初始化
  • mutex只能初始化一次

加了这些自律之后,我们终于可以为mutex写一些调试用的功能了。不像自旋锁只是在处理上加了几条语句,mutex专门设计了调试专用函数来做这些事情:

17  extern void debug_mutex_lock_common(struct mutex *lock,
18                      struct mutex_waiter *waiter);
19  extern void debug_mutex_wake_waiter(struct mutex *lock,
20                      struct mutex_waiter *waiter);
21  extern void debug_mutex_free_waiter(struct mutex_waiter *waiter);
22  extern void debug_mutex_add_waiter(struct mutex *lock,
23                     struct mutex_waiter *waiter,
24                     struct task_struct *task);
25  extern void mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter,
26                  struct task_struct *task);
27  extern void debug_mutex_unlock(struct mutex *lock);
28  extern void debug_mutex_init(struct mutex *lock, const char *name,
29                   struct lock_class_key *key);

注:本文中的代码取自kernel 5.9.10版。

从信号量的例子我们就可以看到可调试性在内核中的重要性。

同样,有很多在内核开发中被重点强调的内容,其重要原因也是因为难以调试,比如栈溢出。
因为不像用户空间的应用程序容易退出,内核本身是一直长期运行的,这就导致内核不得不面对内存严重碎片化的情况,想要分配连续页的内存会越来越困难。而且用作栈的内存也没有办法换出到辅助存储中去,所以尽管栈溢出调试困难,也只能分配4k大小的栈。所以就要求开发者以自律享受自由,尽量避免在栈上分量大的对象。一旦栈溢出了,产生的结果是难以预测的。

所以,我们把内核的可调试性当作第一要务来强调。后面我们会调用各种手段来对内核进行调试,包括打日志,调试文件系统,perf和ftrace等工具,甚至SystemTap和eBPF这样的自动生成内核模块的脚本工具等,以及通过模拟器进行调试等各种手段。

编译内核

讲了调试的重要性之后,我们身体力行,首先讨论如何编译内核,如何在模拟器上跑起内核。
目前Linux的两个最主要的应用场景:一是跑在电脑上,主要场景是给自己的电脑更换内核;另一个是跑在嵌入式设备上,比如手机等。

下载内核

内核源代码地址可以在kernel.org上下载,比如我写此文时最新的稳定版是5.10.1,我们就可以下载这个包:

wget -c https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.1.tar.xz

如果要下载源码树的话,可以去clone kernel主线的代码库:

git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

在运行Linux的电脑上,我们可以通过包管理系统获取到当前使用的系统内核的源代码。

比如在Ubuntu上,可以通过apt install linux-source来安装源代码:

root@iZ8vb39159pi4fttv8aaoyZ:/boot# apt search linux-source
Sorting... Done
Full Text Search... Done
linux-source/focal-updates,focal-updates,focal-security,focal-security,now 5.4.0.58.61 all [installed]
  Linux kernel source with Ubuntu patches

linux-source-5.4.0/focal-updates,focal-updates,focal-security,focal-security,now 5.4.0-58.64 all [installed,automatic]
  Linux kernel source for version 5.4.0 with Ubuntu patches

源代码会下载到/usr/src目录下。

编译Ubuntu 20.04的内核

下载之后,我们将其解压之后,就可以进行编译了。
安装gcc, flex, bison, bc之类的常规操作就不多说了,有遇到问题的请在评论区里提问。

编译之前需要对内核进行一些配置,比如调试信息等。这些配置会写在一个config文件中。
以Ubuntu 20.04系统为例,在/boot目录下可以看到一些config开头的文件,比如config-5.4.0-58-generic,这些就是我们使用的Ubuntu系统的config文件。

这些配置项,以CONFIG_* = y这样的形式来表示这个配置被支持。而如果不支持的话,则把这个配置项用“#”注释掉,并将=y改为is not set以利于理解。

比如我们上面讨论的锁的调试信息,在config文件中的描述如下:

#
# Lock Debugging (spinlocks, mutexes, etc...)
#
CONFIG_LOCK_DEBUGGING_SUPPORT=y
# CONFIG_PROVE_LOCKING is not set
# CONFIG_LOCK_STAT is not set
# CONFIG_DEBUG_RT_MUTEXES is not set
# CONFIG_DEBUG_SPINLOCK is not set
# CONFIG_DEBUG_MUTEXES is not set
# CONFIG_DEBUG_WW_MUTEX_SLOWPATH is not set
# CONFIG_DEBUG_RWSEMS is not set
# CONFIG_DEBUG_LOCK_ALLOC is not set
# CONFIG_DEBUG_ATOMIC_SLEEP is not set
# CONFIG_DEBUG_LOCKING_API_SELFTESTS is not set
# CONFIG_LOCK_TORTURE_TEST is not set
# CONFIG_WW_MUTEX_SELFTEST is not set
# end of Lock Debugging (spinlocks, mutexes, etc...)

我们以Ubuntu 20.04的源码为例,看看如何去编译内核。
进入/usr/src/linux-source-5.4.0目录,我们会看到linux-source-5.4.0.tar.bz2,将其解压。
进入解压后的目录,将/boot/config-5.4.0-58-generic文件复制过来。
然后执行

make ./config-5.4.0-58-generic

成功后,运行make menuconfig,在字符图形界面下可以进行一些手动的配置:
kernel_config.png

配置好之后,保存到.config中,最后执行make -j4来进行编译。j后面是编译开启的线程数。

编译成功后,会看到类似于下面的输出:

Setup is 16380 bytes (padded to 16384 bytes).
System is 8697 kB
CRC 1a8c27e4
Kernel: arch/x86/boot/bzImage is ready  (#1)

编好的kernel在arch/x86/boot/bzImage。

如果我们是想在模拟器上运行内核的话,没有Ubuntu给我准备config。这也不怕,我们可以用x86_64的默认config,在其基础上进行修改。首先我们需要设置下ARCH变量为x86_64,这样不用写路径,make就知道去哪里找x86_64_defconfig

export ARCH=x86_64
make x86_64_defconfig

然后make menuconfig和make不变。

成功后输出如下:

Kernel: arch/x86/boot/bzImage is ready  (#2)

编译ARM64内核

x86_64的搞定了,换成别的架构就是照方抓药了。只不过需要装交叉编译的工具链。
在Ubuntu上,我们可以通过apt install gcc-aarch64-linux-gnu来安装支持ARM64的工具链。
安装好之后,我们配置下CROSS_COMPILE环境变量:

export CROSS_COMPILE=aarch64-linux-gnu-

针对于arm64,只有一个defconfig,设好ARCH之后就可以自动找到了:

export ARCH=arm64

ARCH后面的名字以arch下的子目录名为准,目前kernel支持的架构如下:

  • arc
  • arm64
  • csky
  • hexagon
  • m68k
  • mips
  • nios2
  • parisc
  • riscv
  • sh
  • um
  • x86_64
  • alpha
  • arm
  • c6x
  • h8300
  • ia64
  • microblaze
  • nds32
  • openrisc
  • powerpc
  • s390
  • sparc
  • x86
  • xtensa

我们执行make defconfig

make defconfig

然后运行make -j8之类就可以了。

init程序

但是这样编出来的内核,真的只是一个内核,没有任何shell之类的可以用。内核启动的最后,是要启动一个init程序的,当然我们也可以手写一个。但是为了能有个shell,我们选择用busybox的init.

我们去busybox.net去下载源码:

wget -c https://busybox.net/downloads/busybox-1.32.0.tar.bz2

刚才编译内核时已经设置好ARCH和CROSS_COMPILE了,正好busybox也能用到。
busybox没那么多defconfig,上来就make menuconfig就好。
busybox.png

我们只需要一个busybox程序,所以选择Build static binary。
退出保存之后,执行make -j4去编译。
最后,执行make install,会安装到_install目录下。

准备好了之后,我们需要给busybox的init准备一个配置文件,一般是/etc/init.d/inittab。这时候别说inittab了,我们连目录还没建呢。

第一步:在_install目录下创建etc,dev,mnt和etc/init.d/目录:

mkdir etc
mkdir dev
mkdir mnt
mkdir -p etc/init.d/

mkdir加-p参数的意思是如果父目录没有创建,则创建之。

第二步:创建inittab文件。
这个我们哪会写,看busybox给我们的例子:

::sysinit:/etc/init.d/rcS
# /bin/sh invocations on selected ttys
#
# Note below that we prefix the shell commands with a "-" to indicate to the
# shell that it is supposed to be a login shell.  Normally this is handled by
# login, but since we are bypassing login in this case, BusyBox lets you do
# this yourself...
#
# Start an "askfirst" shell on the console (whatever that may be)
::askfirst:-/bin/sh
# Start an "askfirst" shell on /dev/tty2-4
tty2::askfirst:-/bin/sh
tty3::askfirst:-/bin/sh
tty4::askfirst:-/bin/sh

# /sbin/getty invocations for selected ttys
tty4::respawn:/sbin/getty 38400 tty5
tty5::respawn:/sbin/getty 38400 tty6

# Stuff to do when restarting the init process
::restart:/sbin/init

# Stuff to do before rebooting
::ctrlaltdel:/sbin/reboot
::shutdown:/bin/umount -a -r
::shutdown:/sbin/swapoff -a

我们把注释删一删,tty也用不了这么多,精简一下:

::sysinit:/etc/init.d/rcS
::askfirst:-/bin/sh
::restart:/sbin/init
::ctrlaltdel:/sbin/reboot
::shutdown:/bin/umount -a -r
::shutdown:/sbin/swapoff -a

另外,我们不想用::respawn:-/sbin/getty或者login之类的登陆界面,直接进入系统,所以加一条直接调shell: ::respawn:-/bin/sh。
这个参考自busybox的examples/bootfloppy/etc下面的inittab

最后写出来如下:

::sysinit:/etc/init.d/rcS
::askfirst:-/bin/sh
::respawn:-/bin/sh
::restart:/sbin/init
::ctrlaltdel:/sbin/reboot
::shutdown:/bin/umount -a -r
::shutdown:/sbin/swapoff -a

写完之后,我们欠Busybox一个启动脚本/etc/init.d/rcS。

第三步:在etc/init.d目录下创建rcS文件,如下:

mkdir -p /proc
mkdir -p /tmp
mkdir -p /sys
mkdir -p /mnt
/bin/mount -a
mkdir -p /dev/pts
mount -t devpts devpts /dev/pts
echo /sbin/mdev > /proc/sys/kernel/hotplug
mdev -s

/proc是内核向进程发送消息的机制。比如cat /proc/cpuinfo可以查看cpu运行信息,而cat /proc/meminfo是内存信息。
/sys与/proc类似,也是内核用于展示信息的虚拟文件系统,于2.5版引入,主要展示设备树。
/tmp是临时目录
/mnt是挂载点
/dev/pts是通过ssh等远程登陆时创建的控制台设备文件

mdev是busybox提供的管理热插拔的程序。

BusyBox v1.32.0 (2020-12-15 16:24:44 CST) multi-call binary.

Usage: mdev [-s] | [-df]

mdev -s is to be run during boot to scan /sys and populate /dev.
mdev -d[f]: daemon, listen on netlink.
    -f: stay in foreground.

Bare mdev is a kernel hotplug helper. To activate it:
    echo /sbin/mdev >/proc/sys/kernel/hotplug

如上面说明所示,-s用于启动时扫描,激活命令我们也照抄。

rcS写好了之后需要通过chmod +x rcS赋给可执行权限。

有同学问了,mount -a是挂载啥的?这是按照/etc/fstab来mount所有里面写的文件系统的,我们马上就写一个fstab。
参照busybox-1.32.0/examples/bootfloppy/etc/init.d/rcS,mount -a调用fstab也是busybox的传统操作。

第四步, 创建fstab文件
内容如下:

proc /proc proc defaults 0 0
tmpfs /tmp tmpfs defaults 0 0
sysfs /sys sysfs defaults 0 0
tmpfs /dev tmpfs defaults 0 0
debugfs /sys/kernel/debug debugfs defaults 0 0

到此为止,欠busybox init的连环债算是还清了,下面我们就以此文件系统去编译内核。

在qemu中运行

有了busybox的init程序,我们重新编译下内核,在menuconfig中将刚才的_install目录设置进去,在General配置的Init RAM filesystem中:
initramfs
将我们刚才准备好的_install目录的路径设置进去就好。

配置好保存之后,make -j4开始编译。

经过一段欢快的编译,生成Image:

...
  LD      vmlinux.o
  MODPOST vmlinux.symvers
  MODINFO modules.builtin.modinfo
  GEN     modules.builtin
  LD      .tmp_vmlinux.kallsyms1
  KSYMS   .tmp_vmlinux.kallsyms1.S
  AS      .tmp_vmlinux.kallsyms1.S
  LD      .tmp_vmlinux.kallsyms2
  KSYMS   .tmp_vmlinux.kallsyms2.S
  AS      .tmp_vmlinux.kallsyms2.S
  LD      vmlinux
  SORTTAB vmlinux
  SYSMAP  System.map
  MODPOST Module.symvers
  OBJCOPY arch/arm64/boot/Image
  GZIP    arch/arm64/boot/Image.gz

下面我们调用qemu来运行这个内核,qemu可以通过apt来安装。我们模拟4核A72,16G内存:

qemu-system-aarch64 -machine virt -cpu cortex-a72 -machine type=virt -nographic -m 16384 -smp 4 -kernel arch/arm64/boot/Image --append "rdinit=/linuxrc console=ttyAMA0"

然后我们就可以登陆进我们的aarch64的Linux啦,我们可以uname看看,是不是我们编的5.10.1:

/ # uname -a
Linux (none) 5.10.1 #4 SMP PREEMPT Wed Dec 16 18:19:47 CST 2020 aarch64 GNU/Linux

我们再看看cpuinfo:

/ # cat /proc/cpuinfo
processor    : 0
BogoMIPS    : 125.00
Features    : fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
CPU implementer    : 0x41
CPU architecture: 8
CPU variant    : 0x0
CPU part    : 0xd08
CPU revision    : 3

processor    : 1
BogoMIPS    : 125.00
Features    : fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
CPU implementer    : 0x41
CPU architecture: 8
CPU variant    : 0x0
CPU part    : 0xd08
CPU revision    : 3

processor    : 2
BogoMIPS    : 125.00
Features    : fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
CPU implementer    : 0x41
CPU architecture: 8
CPU variant    : 0x0
CPU part    : 0xd08
CPU revision    : 3

processor    : 3
BogoMIPS    : 125.00
Features    : fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
CPU implementer    : 0x41
CPU architecture: 8
CPU variant    : 0x0
CPU part    : 0xd08
CPU revision    : 3

最后的秘技是如何退出qemu,按Ctrl-a x,就可以退出了,显示:

/ # QEMU: Terminated

恭喜,一个可玩的内核已经可以工作啦。

懂源码是根本

Linus反对在内核里加入调试器也不是没有道理,调试器只是手段,我们也不能舍本逐末,有了方便的调试手段就不去钻研原理和源码了。
我们希望在解剖kernel的时候能让大家有更丰富的视角,但是最近我们的目标还是理解内核的逻辑和代码。
请大家跟我一起沉下心来,我们一步一步开始探索之旅。

目录
相关文章
|
5天前
|
安全 Linux 测试技术
Intel Linux 内核测试套件-LKVS介绍 | 龙蜥大讲堂104期
《Intel Linux内核测试套件-LKVS介绍》(龙蜥大讲堂104期)主要介绍了LKVS的定义、使用方法、测试范围、典型案例及其优势。LKVS是轻量级、低耦合且高代码覆盖率的测试工具,涵盖20多个硬件和内核属性,已开源并集成到多个社区CICD系统中。课程详细讲解了如何使用LKVS进行CPU、电源管理和安全特性(如TDX、CET)的测试,并展示了其在实际应用中的价值。
|
26天前
|
消息中间件 Java Kafka
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
本文介绍了Kafka集群的搭建过程,涵盖从虚拟机安装到集群测试的详细步骤。首先规划了集群架构,包括三台Kafka Broker节点,并说明了分布式环境下的服务进程配置。接着,通过VMware导入模板机并克隆出三台虚拟机(kafka-broker1、kafka-broker2、kafka-broker3),分别设置IP地址和主机名。随后,依次安装JDK、ZooKeeper和Kafka,并配置相应的环境变量与启动脚本,确保各组件能正常运行。最后,通过编写启停脚本简化集群的操作流程,并对集群进行测试,验证其功能完整性。整个过程强调了自动化脚本的应用,提高了部署效率。
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
|
18天前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
67 15
|
23天前
|
存储 NoSQL Linux
linux之core文件如何查看和调试
通过设置和生成 core 文件,可以在程序崩溃时获取详细的调试信息。结合 GDB 等调试工具,可以深入分析 core 文件,找到程序崩溃的具体原因,并进行相应的修复。掌握这些调试技巧,对于提高程序的稳定性和可靠性具有重要意义。
143 6
|
1月前
|
运维 监控 Linux
BPF及Linux性能调试探索初探
BPF技术从最初的网络数据包过滤发展为强大的系统性能优化工具,无需修改内核代码即可实现实时监控、动态调整和精确分析。本文深入探讨BPF在Linux性能调试中的应用,介绍bpftune和BPF-tools等工具,并通过具体案例展示其优化效果。
65 14
|
1月前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
1月前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
1月前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
1月前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
1月前
|
负载均衡 算法 Linux
深入探索Linux内核调度机制:公平与效率的平衡####
本文旨在剖析Linux操作系统内核中的进程调度机制,特别是其如何通过CFS(完全公平调度器)算法实现多任务环境下资源分配的公平性与系统响应速度之间的微妙平衡。不同于传统摘要的概览性质,本文摘要将直接聚焦于CFS的核心原理、设计目标及面临的挑战,为读者揭开Linux高效调度的秘密。 ####
45 3