序言
JupyterHub是一个可以支持多个客户同时在线的Jypter管理平台
JupyterHub的目标
• A cloud provider such as Google Cloud, Microsoft Azure, Amazon EC2, IBM Cloud,Alibaba Cloud…
• Kubernetes to manage resources on the cloud
• Helm to configure and control the packaged JupyterHub installation
• JupyterHub to give users access to a Jupyter computing environment
• A terminal interface on some operating system
引子
JupyterHub并没有提供alibaba的指导,因此本文补充在JupyterHub在aliyun 容器服务上从零开始的步骤。
此外在GPU的使用上通过GPU共享方案--CGPU来提高GPU的利用率。
操作步骤
创建kubernetes集群
- 创建容器服务集群
- 添加GPU节点
- 设置GPU节点为共享模式,参考《尝鲜阿里云容器服务Kubernetes 1.16,拥抱GPU新姿势》
安装JupyterHub
安装Helm
阿里云容器服务目前默认支持的Helm版本为v3。
从https://github.com/helm/helm/releases/ 页面找到最新的版本,下载helm文件,并添加到对应的path路径中。
安装JupyterHub
- Generate a random hex string representing 32 bytes to use as a security token. Run this command in a terminal and copy the output:
openssl rand -hex 32
- 创建PVC和StorageClass信息
创建Nas存储,并建立挂载点。参考链接 https://help.aliyun.com/document_detail/144398.html?spm=a2c4g.11186623.6.757.71aa2b8djPh6fE
如下文件存储为storage.yaml 文件,并通过 `kubectl apply -f storage.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: alicloud-nas-subpath
mountOptions:
- nolock,tcp,noresvport
- vers=3
parameters:
volumeAs: subpath
server: "0994fd65-66f5.cn-zhangjiakou.extreme.nas.aliyuncs.com:/share" #需要放自己的nas的挂载点,操作参考 https://help.aliyun.com/document_detail/144398.html?spm=a2c4g.11186623.6.757.71aa2b8djPh6fE
provisioner: nasplugin.csi.alibabacloud.com
reclaimPolicy: Retain
#---
#kind: PersistentVolumeClaim
#apiVersion: v1
#metadata:
# name: hub-db-dir
# namespace: jhub
#spec:
# accessModes:
# - ReadWriteMany
# storageClassName: alicloud-nas-subpath
# resources:
# requests:
# storage: 1Gi
- 修改原始config文件
- 修改config.yaml文件中各个镜像的路径,避免拉取google仓库的镜像而造成的失败
- 因为当前使用的版本0.8.2不能和k8s1.16正确匹配,在install脚本中添加了对应的path 脚本参考 https://github.com/jupyterhub/kubespawner/issues/354
修改pod申请gpu资源的配置,设置CGPU的模式 aliyun.com/gpu-mem: 4 https://zero-to-jupyterhub.readthedocs.io/en/latest/customizing/user-resources.html
以上修改已经在下面的config.yaml文件中完成了修改。 注意proxy.secretToken必须换为第一步生成的信息
proxy:
secretToken: "d8d198d787f22869e67df3ad3ac5f4d99a843c20243f9ed785f77822fb4ce517" ## 该token选用自己在步骤1中生成的即可
prePuller:
continuous:
enabled: false
extraImages: {}
hook:
enabled: true
image:
name: jupyterhub/k8s-image-awaiter
tag: 0.8.2
pause:
image:
# 替换默认的google镜像
name: registry.cn-zhangjiakou.aliyuncs.com/kubernetesmirror/pause
tag: "3.1"
hub:
#image:
# name: jupyterhub/k8s-hub
# tag: 0.9.0-beta.3
# 0.8.2 # 尝试提高该版本来与kubernetes 1.16匹配,待验证https://github.com/jupyterhub/kubespawner/issues/354
db:
password: null
pvc:
accessModes:
- ReadWriteOnce
annotations: {}
selector: {}
storage: 1Gi
storageClassName: alicloud-nas-subpath
singleuser:
storage:
capacity: 2Gi
dynamic:
pvcNameTemplate: claim-{username}{servername}
storageAccessModes:
- ReadWriteOnce
storageClass: alicloud-nas-subpath
volumeNameTemplate: volume-{username}{servername}
profileList:
- display_name: "CGPU Server" ## 共享GPU使用模式
description: "Spawns a notebook server with access to a CGPU"
kubespawner_override:
extra_resource_limits:
aliyun.com/gpu-mem: 2
- display_name: "GPU Server" ## 普通GPU使用模式
description: "Spawns a notebook server with access to a GPU"
kubespawner_override:
extra_resource_limits:
nvidia.com/gpu: 1
image:
#name: jupyterhub/k8s-singleuser-sample
#name: tensorflow/tensorflow
pullPolicy: IfNotPresent
# 替换为自己需要的镜像即可,本例中使用的是支持TensorFlow的镜像,可以从官方网站上去找合适的镜像
name: registry.cn-hangzhou.aliyuncs.com/kubeflow-images-public/tensorflow-notebook
tag: 1.15.2
- 执行安装脚本
将如下内存存储为install.sh 文件,并将步骤3存储的config.yaml 文件放在同一个目录下,执行安装命令
bash sh ./install.sh
# Suggested values: advanced users of Kubernetes and Helm should feel
# free to use different values.
RELEASE=jhub
NAMESPACE=jhub
helm upgrade --install $RELEASE jupyterhub/jupyterhub \
--namespace $NAMESPACE \
--version=0.8.2 \
--values config.yaml -v 6
sleep 30
export NAMESPACE=jhub
kubectl patch deploy -n $NAMESPACE hub --type json --patch '[{"op": "replace", "path": "/spec/template/spec/containers/0/command", "value": ["bash", "-c", "\nmkdir -p ~/hotfix\ncp -r /usr/local/lib/python3.6/dist-packages/kubespawner ~/hotfix\nls -R ~/hotfix\npatch ~/hotfix/kubespawner/spawner.py << EOT\n72c72\n< key=lambda x: x.last_timestamp,\n---\n> key=lambda x: x.last_timestamp and x.last_timestamp.timestamp() or 0.,\nEOT\n\nPYTHONPATH=$HOME/hotfix jupyterhub --config /srv/jupyterhub_config.py --upgrade-db\n"]}]'
注意:“kubectl patch deploy...” 该命令执行是在安装helm后30秒后执行,注意耐心等待,不要提前终止
验证与使用
- 验证pod和svc的状态均为正常
jumper(⎈ |zjk-gpu:jhub)➜ ~ k get pod -n jhub
NAME READY STATUS RESTARTS AGE
hub-86d7754c55-jnsd8 1/1 Running 0 10h
proxy-657b654c85-htl62 1/1 Running 0 10h
jumper(⎈ |zjk-gpu:jhub)➜ ~ k get svc -n jhub
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hub ClusterIP 172.21.10.208 <none> 8081/TCP 10h
proxy-api ClusterIP 172.21.13.171 <none> 8001/TCP 10h
proxy-public LoadBalancer 172.21.15.40 47.92.24.78 80:30889/TCP,443:31823/TCP 10h
- 根据通过svc proxy-public 对应的公网IP访问网站,由于没有设置用户密码,可以随意设置
- 如下图是在config.yaml文件中配置的多个profile,分别是申请普通的GPU资源,以及共享型的GPU资源
- 如下图,正在创建正在使用的pod
- 查看命名空间 jhub下的pod的情况,有一个jupyter-${用户名}的pod生成
jumper(⎈ |zjk-gpu:jhub)➜ 54_cgpu_demo git:(master) ✗ k get pod
NAME READY STATUS RESTARTS AGE
hub-5ff8cff85f-nmhfl 1/1 Running 0 46h
jupyter-lilong 1/1 Running 0 17s
proxy-657b654c85-8mn6t 1/1 Running 0 46h
- 至此,环境创建成功。
问题记录
搭建过程中的问题与记录
问题1 NoneType
错误信息
[E 2020-05-30 00:24:14.373 JupyterHub base:1011] Preventing implicit spawn for a because last spawn failed: '<' not supported between instances of 'NoneType' and 'NoneType'
说明: 已知问题,参考 https://github.com/jupyterhub/kubespawner/issues/354
上面在安装helm chart之后的“kubectl patch deploy...”就是修复该问题
问题2 存储
不管是hub的创建,还是每个客户运行自己环境创建的pod均需要使用到存储,如果pod启动pending,且kubectl describe pod * 里面显示存储资源不足,可以参考nas相关的存储的设置。 https://help.aliyun.com/document_detail/144398.html?spm=a2c4g.11186623.6.757.71aa2b8djPh6fE