AI和机器学习时代 如何对抗新的网络威胁

简介: 需要渗透测试服务出现了一个世纪以来时,在系统的攻击变得频繁。许多公司开始丢失其敏感数据,从而以最坏的方式影响了客户。敏感数据的丢失恰恰是我们何时(以及为什么)看到另一个技术行业兴起的时候。

--------点击屏幕右侧或者屏幕底部“+订阅”,关注我,随时分享机器智能最新行业动态及技术干货----------

1.png

需要渗透测试服务出现了一个世纪以来时,在系统的攻击变得频繁。许多公司开始丢失其敏感数据,从而以最坏的方式影响了客户。

敏感数据的丢失恰恰是我们何时(以及为什么)看到另一个技术行业兴起的时候。

您会看到一家公司让位给渗透测试的整个新行业。该公司收集了比较优秀的技术人才,并要求他们提出解决方案,以阻止网络犯罪分子伤害组织和个人。

但是,网络犯罪和测试人员领域的变化比任何其他技术领域都快。网络罪犯不断提出新的病毒和网络攻击。为了避免人们落入这些陷阱,测试公司需要进行足够的发展以计划这些病毒,并领先于犯罪分子。让我们深入了解渗透测试的历史,以了解其随着时间的变化。

一开始的渗透测试

企业始终有理由选择渗透测试,以保持与恶意软件和其他病毒的距离。首先,渗透测试仅针对系统而设计-使它们从各个角度都是安全的。很快,人们发现企业也可以通过网络钓鱼和社交活动成为目标。

多角度攻击迫使渗透测试公司针对每种可能的网络威胁提出解决方案。在大多数情况下,测试是手动完成的,一组测试人员会坐在一起,了解软件,列出所有要求并构建测试用例。

然后逐个运行这些测试用例,并记录每个测试用例的状态。最后,准备了一份报告,供开发人员了解可能存在的漏洞,重新创建漏洞的方法以及弥补这些漏洞的想法。市场上引入了不同的技术来适应人们的不同需求。但是,步骤几乎总是相同的,因为它需要一组测试人员来执行所有活动。然后是更先进技术的时代。由人工智能和机器学习提供支持的软件。

机器学习技术很聪明,但是却不受保护,可以让网络罪犯攻击并掌握它。

尽管每个公司都认为对这种新的物联网技术使用手动测试是一个好主意,但大多数情况下它们都失败了。这次失败显然要求设计出新的方法,并将其用于改善使用 AI 和 ML 技术小工具的组织和个人。

人工智能和机器学习时代

尽管测试人员在手动测试的帮助下尽了很大的努力来对抗新的网络威胁,但他们却多次失败了。

当 AI 成为对罪犯的威胁时,测试领域引入了新的历史转折。人工智能和机器学习已成为渗透测试的一部分。开发了不同的 AI 和 ML 技术和工具来帮助捕获系统中存在的恶意软件和病毒。

现在,您一定想知道,在攻击者手中人工智能是否如此强大,它在用于测试时是否应该提供更多好处?显然,它应该在测试中提供更多的好处—因此,这是渗透测试公司如何在其技术中嵌入 AI 和 ML 的方式发展:

更好的信息收集

整个测试活动中最重要的阶段之一就是收集信息。它也被称为侦察阶段。根据专家的说法,如果测试人员设法收集到更多数据,那么一开始他们获得成功的机会就会增加一倍以上。但是,这很容易说,而且很难做。在笔测试活动中,团队只有有限的时间花在收集数据上。很难确保所收集数据的质量是比较好的。

借助 AI 的持续支持,可以在有限的时间内收集大量的质量数据。甚至可以利用计算机视觉,自然语言处理和机器学习来确保构建具有许多细节的良好数据概况。

扫描系统

手动测试许多系统需要花费大量时间。同样,由于人必定会犯错误,因此很多时候系统中的漏洞没有引起注意,从而造成麻烦。当扫描数百个系统时,您可以想象手动测试可能带来的破坏。人工智能支持的扫描确保全面覆盖并获得良好的解释结果。也可以在需要的地方使用它对代码进行一些修改。总体而言,它节省了大量时间和精力。而且,AI 提供了良好的测试管理和自动创建测试用例。因此,它使您的系统更安全。

维护和进入阶段

一旦测试人员完成扫描,他们就准备好访问多个网络设备并提取目标数据并开始测试。此步骤的主要目的是确保不存在任何漏洞,防止攻击者加以利用。测试还包括检查每位员工的凭证和强项。基于AI的解决方案能够尝试不同的密码组合,以检查破解密码的强度。设计了不同的算法来观察用户数据,持续的趋势,当前的模式并训练自己进行更好的测试。

更佳报告

每个测试公司紧随其后的渗透测试的最后阶段是报告阶段。报告阶段通常测试攻击者掩盖其踪迹并删除系统中存在的所有踪迹的能力。这些证据可以在现有的访问通道,用户日志以及由于渗透过程引起的意外错误消息中找到。手动测试未能在更大范围内发现这些问题,从而使攻击者可以轻松地执行其任务,而无需管理层知道它们的存在。

另一方面,人工智能工具可以轻松地发现隐藏的后门,系统中网络犯罪分子的踪迹以及原本不应该存在的多个访问点。一旦找到,这些活动及其详细信息将存储并保存在报告中。详细的报告还包含针对每一次攻击的适当时间表。

人工智能笔测试的总体优势

既然我们已经讨论了 AI 所能提供的好处以及它在渗透测试领域所带来的变化,我们现在就可以轻而易举地计算出好处。这是 AI 笔测试比手动测试好得多的方法的完整列表。

  • 由于人工智能参与了基于 AI 的测试,因此返回结果要比手动测试更快。这减少了预期的时间投入,并为开发人员提供了更多时间来解决问题。
  • 基于 AI 的渗透测试可确保测试完成后不存在漏洞。与手动测试相比,这使您的系统和软件更安全。
  • 与手动测试相比,测试结果更加准确。这也为开发人员和测试人员减轻了烦恼。
  • 对于公司而言,让 AI 执行重复性和一般的任务会减少投资。您可以投资购买 AI 工具,而不必雇用和管理庞大的测试人员团队。
  • 由于组织的增长速度很快,因此很难通过手动测试来对其进行测试。因此,基于 AI 的测试可确保以更少的时间对大量系统进行测试并获得良好的结果。
  • 这些工具在市场上很容易获得,并随着新威胁和病毒的进入而不断更新。因此,您不必担心提高员工技能并对其进行投资。

image.png

文章来源:https://yqh.aliyun.com/detail/15855

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
72 3
|
21天前
|
人工智能 安全 算法
利用AI技术提升网络安全防御能力
【10月更文挑战第42天】随着人工智能技术的不断发展,其在网络安全领域的应用也日益广泛。本文将探讨如何利用AI技术提升网络安全防御能力,包括异常行为检测、恶意软件识别以及网络攻击预测等方面。通过实际案例和代码示例,我们将展示AI技术在网络安全防御中的潜力和优势。
|
23天前
|
人工智能 运维 物联网
AI在蜂窝网络中的应用前景
AI在蜂窝网络中的应用前景
44 3
|
25天前
|
机器学习/深度学习 人工智能 安全
AI与网络安全:防御黑客的新武器
在数字化时代,网络安全面临巨大挑战。本文探讨了人工智能(AI)在网络安全中的应用,包括威胁识别、自动化防御、漏洞发现和预测分析,展示了AI如何提升防御效率和准确性,成为对抗网络威胁的强大工具。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
48 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
37 2
|
1月前
|
机器学习/深度学习 人工智能 物联网
5G与AI融合:智能网络的新纪元
【10月更文挑战第25天】
56 3
|
1月前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
|
20天前
|
机器学习/深度学习 人工智能 自动驾驶
揭秘AI:机器学习如何改变我们的世界
在这篇文章中,我们将深入探讨机器学习如何改变我们的世界。从自动驾驶汽车到智能医疗诊断,机器学习正在逐步渗透到我们生活的每一个角落。我们将通过实例和代码示例,揭示机器学习的工作原理,以及它如何影响我们的生活。无论你是科技爱好者,还是对人工智能充满好奇的普通读者,这篇文章都将为你打开一扇新的大门,带你走进机器学习的世界。
26 0