好程序员大数据培训分享Hive的静态分区与动态分区

简介:

  好程序员大数据培训分享Hive的静态分区与动态分区:分区是hive存放数据的一种方式。将列值作为目录来存放数据,就是一个分区。这样查询时使用分区列进行过滤,只需根据列值直接扫描对应目录下的数据,不扫描其他不关心的分区,快速定位,提高查询效率。分动态和静态分区两种:
  1. 静态分区:若分区的值是确定的,那么称为静态分区。新增分区或者是加载分区数据时,已经指定分区名。
  create table if not exists day_part1(
  uid int,
  uname string
  )
  partitioned by(year int,month int)
  row format delimited fields terminated by 't';
  ##加载数据指定分区
  load data local inpath '/root/Desktop/student.txt' into table day_part1
partition(year=2017,month=04);
  ##新增分区指定分区名
  alter table day_part1 add partition(year=2017,month=1)
partition(year=2016,month=12);
  2. 动态分区:分区的值是非确定的,由输入数据来确定
  2.1 动态分区的相关属性:
  hive.exec.dynamic.partition=true :是否允许动态分区
  hive.exec.dynamic.partition.mode=strict :分区模式设置
  strict:最少需要有一个是静态分区
  nostrict:可以全部是动态分区
  hive.exec.max.dynamic.partitions=1000 :允许动态分区的最大数量
  hive.exec.max.dynamic.partitions.pernode =100
:单个节点上的mapper/reducer允许创建的最大分区
  2.2 动态分区的操作
  ##创建临时表
  create table if not exists tmp
  (uid int,
  commentid bigint,
  recommentid bigint,
  year int,
  month int,
  day int)
  row format delimited fields terminated by 't';
  ##加载数据
  load data local inpath '/root/Desktop/comm' into table tmp;
  ##创建动态分区表
  create table if not exists dyp1
  (uid int,
  commentid bigint,
  recommentid bigint)
  partitioned by(year int,month int,day int)
  row format delimited fields terminated by 't';
  ##严格模式
  insert into table dyp1 partition(year=2016,month,day)
  select uid,commentid,recommentid,month,day from tmp;
  ##非严格模式
  ##设置非严格模式动态分区
  set hive.exec.dynamic.partition.mode=nostrict;
  ##创建动态分区表
  create table if not exists dyp2
  (uid int,
  commentid bigint,
  recommentid bigint)
  partitioned by(year int,month int,day int)
  row format delimited fields terminated by 't';
  ##为非严格模式动态分区加载数据
  insert into table dyp2 partition(year,month,day)
  select uid,commentid,recommentid,year,month,day from tmp;
  3.分区注意细节
  (1)、尽量不要用动态分区,因为动态分区的时候,将会为每一个分区分配reducer数量,当分区数量多的时候,reducer数量将会增加,对服务器是一种灾难。
  (2)、动态分区和静态分区的区别,静态分区不管有没有数据都将会创建该分区,动态分区是有结果集将创建,否则不创建。
  (3)、hive动态分区的严格模式和hive提供的hive.mapred.mode的严格模式。
  hive提供我们一个严格模式:为了阻止用户不小心提交恶意hql
  hive.mapred.mode=nostrict : strict
  如果该模式值为strict,将会阻止以下三种查询:
  (1)、对分区表查询,where中过滤字段不是分区字段。
  (2)、笛卡尔积join查询,join查询语句,不带on条件或者where条件。
  (3)、对order by查询,有order by的查询不带limit语句。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
存储 SQL 分布式计算
大数据散列分区映射到分区
大数据散列分区映射到分区
189 4
|
7月前
|
SQL 分布式计算 大数据
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
本文深入介绍 Hive 与大数据融合构建强大数据仓库的实战指南。涵盖 Hive 简介、优势、安装配置、数据处理、性能优化及安全管理等内容,并通过互联网广告和物流行业案例分析,展示其实际应用。具有专业性、可操作性和参考价值。
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
|
存储 负载均衡 算法
大数据散列分区计算哈希值
大数据散列分区计算哈希值
194 4
|
大数据 数据管理 定位技术
大数据散列分区选择分区键
大数据散列分区选择分区键
158 2
|
负载均衡 大数据
大数据散列分区查询频率
大数据散列分区查询频率
141 5
|
存储 大数据 数据处理
大数据散列分区数据分布
大数据散列分区数据分布
152 2
|
存储 大数据 数据管理
大数据分区注意事项
大数据分区注意事项
228 5
|
存储 SQL 分布式计算
大数据如何增加分区
大数据如何增加分区
218 5
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
167 4
|
存储 算法 固态存储
大数据分区优化存储成本
大数据分区优化存储成本
323 4