OSS数据湖实践——EMR + Spark + OSS案例

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,内容安全 1000次 1年
对象存储 OSS,恶意文件检测 1000次 1年
简介: 构建基于OSS数据源的EMR大数据计算环境,使用Spark大数据计算引擎,实现简单的大数据分析案例。

本文介绍大数据分析引擎spark 基于EMR集群,利用OSS云存储数据,实现一个简单的分析案例。

前提条件

• 已注册阿里云账号,详情请参见注册云账号。
• 已开通E-MapReduce服务和OSS服务。
• 已完成云账号的授权,详情请参见角色授权。
• 已创建Haoop集群,且带有spark组件, 配置好相关的OSS数据源。

步骤一:数据上传至oss

hadoop fs -put course2.csv oss://your-bucket-name/

步骤二:编写处理代码,及打包

1、分析代码

import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.row_number
object OSSExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("OSSExample")
      .getOrCreate()

    val data=spark.read.format("csv").option("header","true").load("oss://your-bucket-name/course2.csv")
    val data1 = data.groupBy("subject", "level").count()
    val window = Window.partitionBy("subject").orderBy(org.apache.spark.sql.functions.col("count").desc)
    val data2 = data1.withColumn("topn", row_number().over(window)).where("topn <= 1" )
    data2.show(false)
  }
}

2、IDEA打包

IDEA Build -> Build Artifact ->Build

步骤三:上传jar包到Hadoop 或者oss

在本例中,我们把jar上传至OSS中
把jar 上传到集群header节点,然后使用以下命令

hadoop fs -put OSSExample.jar oss://your-bucket-name/

步骤四:创建作业job,运行作业

1589440761148_4bce9074_7251_4635_9a6b_419cff8c7d14

--class OSSExample --master yarn --deploy-mode client --driver-memory 3g --num-executors 10 --executor-memory 3g --executor-cores 3 --conf spark.default.parallelism=50 --conf spark.yarn.am.memoryOverhead=1g --conf spark.yarn.am.memory=2g oss://your-bucket-name/OSSExample.jar

步骤五:查看作业运行是否成功及查看运行结果

1589440928932_7d7a6714_222f_4db6_8ec2_9c986f97677c
1589440948410_da115864_adc9_41da_9fc7_d29f153446e5

总结

通过本次实践,实现了从OSS上读取数据,并在EMR集群上进行简单统计分析的Spark作业运行;通过本次实践,能够了解如何利用Spark对OSS进行分析的具体过程,有助于后续其他复杂作业的开发以及实践。

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
目录
相关文章
|
30天前
|
存储 人工智能 开发工具
AI场景下的对象存储OSS数据管理实践
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
88 10
|
30天前
|
弹性计算 人工智能 数据管理
AI场景下的对象存储OSS数据管理实践
本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
85 10
|
5天前
|
存储 人工智能 数据管理
云端问道17期方案教学-AI场景下的对象存储OSS数据管理实践
本文介绍了AI场景下的对象存储OSS数据管理实践,由阿里云技术专家明锦分享。主要内容分为两部分:1) AI场景下对象存储实践方案,包括对象存储的应用、优势及在模型推理中的优化;2) OSS常用工具介绍,如OSSFS、Python SDK、Go SDK等,并详细说明了这些工具的特点和使用场景。文中还探讨了不同模式下的性能优化,以及即将推出的OS Connector for AI/ML工具,旨在提升数据下载速度和IO性能。
|
2月前
|
弹性计算 数据管理 应用服务中间件
活动实践 | 借助OSS搭建在线教育视频课程分享网站
本教程指导用户在阿里云ECS实例上搭建在线教育网站,包括重置ECS密码、配置安全组、安装Nginx、创建网站页面、上传数据至OSS、开通OSS传输加速、配置生命周期策略及清理资源等步骤,实现高效、低成本的数据管理和网站运营。
活动实践 | 借助OSS搭建在线教育视频课程分享网站
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
202 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
85 0
|
3月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
59 0
|
3月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
117 0
|
2月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
128 6
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
153 2

热门文章

最新文章