深度学习系统镜像(预装NVIDIA GPU驱动和深度学习框架)

简介:


深度学习系统镜像一键安装简单方便,无需手动安装GPU驱动和深度学习框架,码笔记分享阿里云深度学习操作系统镜像,这款镜像是免费使用的,基于CentOS 7.3 64位系统,预装NVIDIA GPU驱动、TensorFlow、MXNet开源深度学习框架:


CentOS 7.3(预装NVIDIA GPU驱动和深度学习框架)


深度学习镜像操作系统



  • 镜像来源:阿里云镜像市场

  • 预装软件:预装NVIDIA GPU驱动、TensorFlow、MXNet开源深度学习框架
  • 费用:免费使用

镜像详细说明


该镜像使用CentOS 7.3 64bit系统,预装NVIDIA GPU驱动(384.66),CUDA(8.0.61.2 including cuBLAS Patch 2),cuDNN(6.0.21) 预装TensorFlow 1.3.0,MXNet 0.11.0。


镜像使用方法


该镜像为阿里云GN4/GN5/GN5i系列实例专用,选购该镜像对应的ECS云服务器,免费安装镜像。如何使用该镜像?用户可以在基于该镜像创建的云主机实例上直接进行深度学习的训练和推理。使用方法很简单,创建GN4/GN5/GN5i系列云服务器:


  1. 选择ECS云服务器规格
    ECS云服务器有多种规格,要选择这个镜像支持的实例,该镜像支持的ECS实例规格有:GN4/GN5/GN5i系列。

如下图所示:
深度学习云服务器规格
码笔记选择的是GPU计算型gn5实例,该款ECS实例支持这款深度学习镜像。
需要注意的是该款ECS实例采用的是本地盘,本地存储有丢失数据风险,不适用于应用层没有数据冗余架构的使用场景,可以参考文档(本地盘详解 - 阿里云


  1. 选择“镜像市场”
    阿里云镜像市场

在镜像市场搜索“CentOS 7.3(预装NVIDIA GPU驱动和深度学习框架)”,该镜像免费,点“使用”即可。


该镜像支持的地域:华北1、华北2、华北3、华北5、华东1、华东2、华南1、华东2金融云、华南1金融云


综上,阿里云镜像市场提供了多种已经安装好GPU驱动及深度学习框架的镜像,选择镜像适用的GPU云服务器即可使用。


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
202 2
|
3月前
|
机器学习/深度学习 并行计算 PyTorch
如何搭建深度学习的多 GPU 服务器
如何搭建深度学习的多 GPU 服务器
112 5
如何搭建深度学习的多 GPU 服务器
|
3月前
|
机器学习/深度学习 人工智能 调度
显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!
显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!
245 7
|
3月前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
60 0
|
5月前
|
机器学习/深度学习 并行计算 算法框架/工具
为什么深度学习模型在GPU上运行更快?
为什么深度学习模型在GPU上运行更快?
75 2
|
5月前
|
机器学习/深度学习 并行计算 PyTorch
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算
|
5月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云GPU服务器全解析_GPU服务器租用费用_NVIDIA A10、V100、T4、P4、P100 GPU卡
阿里云GPU云服务器提供NVIDIA A10、V100、T4、P4、P100等多种GPU卡,结合高性能CPU,单实例计算性能高达5PFLOPS。支持2400万PPS及160Gbps内网带宽。实例规格多样,如A10卡GN7i(3213.99元/月)、V100-16G卡GN6v(3830.00元/月)等。适用于深度学习、科学计算、图形处理等场景。GPU软件如AIACC-Training、AIACC-Inference助力性能优化。购买方式灵活,客户案例包括深势科技、流利说、小牛翻译。
656 0
|
5月前
|
XML 机器学习/深度学习 监控
性能监控之Telegraf+InfluxDB+Grafana NVIDIA GPU实时监控
【6月更文挑战12天】性能监控之Telegraf+InfluxDB+Grafana NVIDIA GPU实时监控
137 0
|
10天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
59 9
|
7天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。随着卷积神经网络(CNN)的发展,图像识别的准确性和效率得到了显著提升。然而,数据不平衡、模型泛化能力、计算资源消耗等问题仍然是制约深度学习在图像识别领域进一步发展的关键因素。本文将详细介绍深度学习在图像识别中的应用案例,并讨论解决现有挑战的可能策略。
下一篇
无影云桌面