深度学习系统镜像(预装NVIDIA GPU驱动和深度学习框架)

简介:


深度学习系统镜像一键安装简单方便,无需手动安装GPU驱动和深度学习框架,码笔记分享阿里云深度学习操作系统镜像,这款镜像是免费使用的,基于CentOS 7.3 64位系统,预装NVIDIA GPU驱动、TensorFlow、MXNet开源深度学习框架:


CentOS 7.3(预装NVIDIA GPU驱动和深度学习框架)


深度学习镜像操作系统



  • 镜像来源:阿里云镜像市场

  • 预装软件:预装NVIDIA GPU驱动、TensorFlow、MXNet开源深度学习框架
  • 费用:免费使用

镜像详细说明


该镜像使用CentOS 7.3 64bit系统,预装NVIDIA GPU驱动(384.66),CUDA(8.0.61.2 including cuBLAS Patch 2),cuDNN(6.0.21) 预装TensorFlow 1.3.0,MXNet 0.11.0。


镜像使用方法


该镜像为阿里云GN4/GN5/GN5i系列实例专用,选购该镜像对应的ECS云服务器,免费安装镜像。如何使用该镜像?用户可以在基于该镜像创建的云主机实例上直接进行深度学习的训练和推理。使用方法很简单,创建GN4/GN5/GN5i系列云服务器:


  1. 选择ECS云服务器规格
    ECS云服务器有多种规格,要选择这个镜像支持的实例,该镜像支持的ECS实例规格有:GN4/GN5/GN5i系列。

如下图所示:
深度学习云服务器规格
码笔记选择的是GPU计算型gn5实例,该款ECS实例支持这款深度学习镜像。
需要注意的是该款ECS实例采用的是本地盘,本地存储有丢失数据风险,不适用于应用层没有数据冗余架构的使用场景,可以参考文档(本地盘详解 - 阿里云


  1. 选择“镜像市场”
    阿里云镜像市场

在镜像市场搜索“CentOS 7.3(预装NVIDIA GPU驱动和深度学习框架)”,该镜像免费,点“使用”即可。


该镜像支持的地域:华北1、华北2、华北3、华北5、华东1、华东2、华南1、华东2金融云、华南1金融云


综上,阿里云镜像市场提供了多种已经安装好GPU驱动及深度学习框架的镜像,选择镜像适用的GPU云服务器即可使用。


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
6月前
|
机器学习/深度学习 人工智能 并行计算
GPU算力平台:数字化转型的核心驱动力
【8月更文第5天】随着人工智能(AI)、大数据分析以及高性能计算需求的不断增长,图形处理器(GPU)因其卓越的并行计算能力而成为加速这些领域的关键技术。GPU算力平台不仅能够显著提升计算效率,还能帮助企业更好地处理大规模数据集,支持复杂的机器学习模型训练,并促进实时数据分析。本文将探讨GPU算力平台在数字化转型中的核心作用,并通过示例代码展示其在实际应用中的优势。
356 1
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
242 5
|
3月前
|
机器学习/深度学习 人工智能 缓存
【AI系统】GPU 基础
GPU,即图形处理器,是计算机系统中处理图形和图像的核心组件,从早期的简单图形加速到如今的高性能计算和深度学习加速,GPU 经历了显著的技术革新。本文将介绍 GPU 的发展历程、与 CPU 的区别、在 AI 领域的关键作用及其在游戏、消费电子、自动驾驶等多个领域的广泛应用。
78 4
|
3月前
|
人工智能 并行计算 流计算
【AI系统】GPU 架构与 CUDA 关系
本文介绍了英伟达GPU硬件基础概念,重点解析了A100 GPU架构中的GPC、TPC、SM等组件及其功能。接着深入讲解了CUDA并行计算平台和编程模型,特别是CUDA线程层次结构。最后,文章探讨了如何根据CUDA核心数量、核心频率等因素计算GPU的算力峰值,这对于评估大模型训练的算力需求至关重要。
106 2
|
3月前
|
机器学习/深度学习 存储 人工智能
【AI系统】为什么 GPU 适用于 AI
本文探讨了GPU在AI计算中的应用,从卷积计算的基本原理入手,解析了GPU线程分级与AI计算模式的关系,以及矩阵乘法如何通过GPU编程提升算力利用率。文章还介绍了计算强度的概念,分析了不同数据结构对计算强度的影响,以及GPU中Tensor Core的作用,强调了在不同存储位置下,找到计算强度与矩阵大小的最佳平衡点对AI计算系统优化的重要性。
144 2
|
3月前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】GPU 架构回顾(从2010年-2017年)
自1999年英伟达发明GPU以来,其技术不断革新。本文概述了从2010年至2024年间,英伟达GPU的九代架构演变,包括费米、开普勒、麦克斯韦、帕斯卡、伏特、图灵、安培、赫柏和布莱克韦尔。这些架构不仅在游戏性能上取得显著提升,还在AI、HPC、自动驾驶等领域发挥了重要作用。CUDA平台的持续发展,以及Tensor Core、NVLink等技术的迭代,巩固了英伟达在计算领域的领导地位。
63 1
|
3月前
|
机器学习/深度学习 人工智能 缓存
【AI系统】GPU 架构回顾(从2018年-2024年)
2018年发布的Turing图灵架构,采用12nm工艺,包含18.6亿个晶体管,大幅提升了PC游戏、专业图形应用及深度学习推理的效率与性能。Turing引入了RT Core和Tensor Core,分别用于实时光线追踪和加速深度学习计算,支持GDDR6内存,显著提升了数据传输速率和效率。此外,Turing架构还支持NVLink 2.0,增强了多GPU协同工作的能力,适用于复杂的图形渲染和深度学习任务。
76 0
【AI系统】GPU 架构回顾(从2018年-2024年)
|
3月前
|
存储 缓存 人工智能
【AI系统】GPU 工作原理
本文详细解析了AI计算体系中的GPU工作原理,重点介绍了GPU与CPU在架构上的差异,强调了GPU在并行计算方面的优势。文章通过$AX+Y$的例子,展示了GPU如何通过并行和并发提高计算效率,并深入探讨了GPU的缓存机制及线程原理,解释了GPU如何通过大量线程和Warp来掩盖延迟问题,实现高效计算。
123 0
|
3月前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
181 5
|
5月前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
414 2

热门文章

最新文章