1万属性,100亿数据,每秒10万吞吐,架构如何设计?

简介: 有一类业务场景,没有固定的schema存储,却有着海量的数据行数,架构上如何来实现这类业务的存储与检索呢?58最核心的数据“帖子”的架构实现技术细节,今天和大家聊一聊。

一、背景描述及业务介绍

什么是58最核心的数据?

58是一个信息平台,有很多垂直品类:招聘、房产、二手物品、二手车、黄页等等,每个品类又有很多子品类,不管哪个品类,最核心的数据都是“帖子信息”。

画外音:像不像一个大论坛? 

各分类帖子的信息有什么特点?

逛过58的朋友很容易了解到,这里的帖子信息:

(1)各品类的属性千差万别,招聘帖子和二手帖子属性完全不同,二手手机和二手家电的属性又完全不同,目前恐怕有近万个属性

(2)数据量巨大100亿级别;

(3)每个属性上都有查询需求,各组合属性上都可能有组合查询需求,招聘要查职位/经验/薪酬范围,二手手机要查颜色/价格/型号,二手要查冰箱/洗衣机/空调;

(4)吞吐量很大,每秒几10万吞吐

 如何解决100亿数据量,1万属性,多属性组合查询,10万并发查询的技术难题呢?一步步来。

 二、最容易想到的方案

每个公司的发展都是一个从小到大的过程,撇开并发量和数据量不谈,先看看

(1)如何实现属性扩展性需求;

(2)多属性组合查询需求;

画外音:公司初期并发量和数据量都不大,必须先解决业务问题。

 如何满足业务的存储需求呢?

最开始,业务只有一个招聘品类,那帖子表可能是这么设计的:

tiezi(tid, uid, c1, c2, c3);
那如何满足各属性之间的组合查询需求呢?

最容易想到的是通过组合索引满足查询需求

index_1(c1, c2)

index_2(c2, c3)

index_3(c1, c3)

 随着业务的发展,又新增了一个房产类别,存储问题又该如何解决呢?

可以新增若干属性满足存储需求,于是帖子表变成了:

tiezi(tid, uid, c1, c2, c3, c10, c11, c12, c13); 

其中:

  • c1,c2,c3是招聘类别属性

  • c10,c11,c12,c13是房产类别属性

通过扩展属性,可以解决存储的问题。

查询需求,又该如何满足呢?

首先,跨业务属性一般没有组合查询需求。只能建立了若干组合索引,满足房产类别的查询需求

画外音:不敢想有多少个索引能覆盖所有两属性查询,三属性查询。

当业务越来越多时,是不是发现玩不下去了?

 三、垂直拆分是一个思路

新增属性是一种扩展方式,新增表也是一种方式,垂直拆分也是常见的存储扩展方案

如何按照业务进行垂直拆分?

可以这么玩:

tiezi_zhaopin(tid, uid, c1, c2, c3);

tiezi_fangchan(tid, uid, c10, c11, c12, c13);

在业务各异,数据量和吞吐量都巨大的情况下,垂直拆分会遇到什么问题呢?

这些表,以及对应的服务维护在不同的部门,看上去各业务灵活性强,研发闭环,这恰恰是悲剧的开始:

(1)tid如何规范?

(2)属性如何规范?

(3)按照uid来查询怎么办(查询自己发布的所有帖子)?

(4)按照时间来查询怎么办(最新发布的帖子)?

(5)跨品类查询怎么办(例如首页搜索框)?

(6)技术范围的扩散,有的用mongo存储,有的用mysql存储,有的自研存储;

(7)重复开发了不少组件;

(8)维护成本过高;

(9)…

画外音:想想看,电商的商品表,不可能一个类目一个表的。

 四、58的玩法:三大中心服务
第一:统一帖子中心服务

平台型创业型公司,可能有多个品类,各品类有很多异构数据的存储需求,到底是分还是合,无需纠结:基础数据基础服务的统一,是一个很好的实践。

画外音:这里说的是平台型业务。
如何将不同品类,异构的数据统一存储起来呢?

(1)全品类通用属性统一存储

(2)单品类特有属性,品类类型与通用属性json来进行存储

更具体的:

tiezi(tid, uid, time, title, cate, subcate, xxid, ext);

(1)一些通用的字段抽取出来单独存储;

(2)通过cate, subcate, xxid等来定义ext是何种含义;
image.png

(3)通过ext来存储不同业务线的个性化需求

例如:

招聘的帖子,ext为:

{“job”:”driver”,”salary”:8000,”location”:”bj”}

而二手的帖子,ext为:

{”type”:”iphone”,”money”:3500}
image.png

帖子数据,100亿的数据量,分256库,通过ext存储异构业务数据,使用mysql存储,上层架了一个帖子中心服务,使用memcache做缓存,就是这样一个并不复杂的架构,解决了业务的大问题。这是58最核心的帖子中心服务IMC(Info Management Center)

画外音:该服务的底层存储在16年全面切换为了自研存储引擎,替换了mysql,但架构理念仍未变。

解决了海量异构数据的存储问题,遇到的新问题是:

(1)每条记录ext内key都需要重复存储,占据了大量的空间,能否压缩存储

(2)cateid已经不足以描述ext内的内容,品类有层级,深度不确定,ext能否具备自描述性

(3)随时可以增加属性,保证扩展性

解决完海量异构数据的存储问题,接下来,要解决的是类目的扩展性问题。

 第二:统一类目属性服务

每个业务有多少属性,这些属性是什么含义,值的约束等,耦合到帖子服务里显然是不合理的,那怎么办呢?

抽象出一个统一的类目、属性服务,单独来管理这些信息,而帖子库ext字段里json的key,统一由数字来表示,减少存储空间。画外音:帖子表只存元信息,不管业务含义。

如上图所示,json里的key不再是”salary” ”location” ”money” 这样的长字符串了,取而代之的是数字1,2,3,4,这些数字是什么含义,属于哪个子分类,值的校验约束,统一都存储在类目、属性服务里。
image.png

画外音:类目表存业务信息,以及约束信息,与帖子表解耦。

这个表里对帖子中心服务里ext字段里的数字key进行了解释:

(1)1代表job,属于招聘品类下100子品类,其value必须是一个小于32的[a-z]字符;

(2)4代表type,属于二手品类下200子品类,其value必须是一个short;

这样就对原来帖子表ext扩展属性:

{“1”:”driver”,”2”:8000,”3”:”bj”}

{”4”:”iphone”,”5”:3500}

key和value都做了统一约束除此之外,如果ext里某个key的value不是正则校验的值,而是枚举值时,需要有一个对值进行限定的枚举表来进行校验:
image.png

这个枚举校验,说明key=4的属性(对应属性表里二手,手机类型字段),其值不只是要进行“short类型”校验,而是value必须是固定的枚举值。

{”4”:”iphone”,”5”:3500}

这个ext就是不合法的,key=4的value=iphone不合法,而应该是枚举属性,合法的应该为:

{”4”:”5”,”5”:3500}

 此外,类目属性服务还能记录类目之间的层级关系

(1)一级类目是招聘、房产、二手…

(2)二手下有二级类目二手家具、二手手机…

(3)二手手机下有三级类目二手iphone,二手小米,二手三星…

(4)…
image.png

类目服务解释了帖子数据,描述品类层级关系,保证各类目属性扩展性,保证各属性值合理性校验,就是58另一个统一的核心服务CMC(Category Management Center)

 画外音:类目、属性服务像不像电商系统里的SKU扩展服务?

(1)品类层级关系,对应电商里的类别层级体系;

(2)属性扩展,对应电商里各类别商品SKU的属性;

(3)枚举值校验,对应属性的枚举值,例如颜色:红,黄,蓝;

 通过品类服务,解决了key压缩,key描述,key扩展,value校验,品类层级的问题,还有这样的一个问题没有解决:每个品类下帖子的属性各不相同,查询需求各不相同,如何解决100亿数据量,1万属性的检索与联合检索需求呢?

 第三:统一检索服务

数据量很大的时候,不同属性上的查询需求,不可能通过组合索引来满足所有查询需求,“外置索引,统一检索服务”是一个很常用的实践

(1)数据库提供“帖子id”的正排查询需求;

(2)所有非“帖子id”的个性化检索需求,统一走外置索引;
image.png

元数据与索引数据的操作遵循:

(1)对帖子进行tid正排查询,直接访问帖子服务;

(2)对帖子进行修改,帖子服务通知检索服务,同时对索引进行修改;

(3)对帖子进行复杂查询,通过检索服务满足需求;

画外音:这个检索服务,扛起了58同城80%的请求(不管来自PC还是APP,不管是主页、城市页、分类页、列表页、详情页,最终都会转化为一个检索请求),它就是58另一个统一的核心服务E-search,这个搜索引擎,是完全自研的。

 对于这个内核自研服务的搜索引擎架构,简单说明一下:
image.png

为应对100亿级别数据量、几十万级别的吞吐量,业务线各种复杂的复杂检索查询,扩展性是设计重点

(1)统一的代理层,作为入口,其无状态性能够保证增加机器就能扩充系统性能;

(2)统一的结果聚合层,其无状态性也能够保证增加机器就能扩充系统性能;

(3)搜索内核检索层,服务和索引数据部署在同一台机器上,服务启动时可以加载索引数据到内存,请求访问时从内存中load数据,访问速度很快:

  • 为了满足数据容量的扩展性,索引数据进行了水平切分,增加切分份数,就能够无限扩展性能

  • 为了满足一份数据的性能扩展性,同一份数据进行了冗余,理论上做到增加机器就无限扩展性能

系统时延,100亿级别帖子检索,包含请求分合,拉链求交集,从聚合层均可以做到10ms返回。

画外音:入口层是Java研发的,聚合层与检索层都是C语言研发的。

 帖子业务,一致性不是主要矛盾,E-search会定期全量重建索引,以保证即使数据不一致,也不会持续很长的时间。 

五、总结
image.png

文章写了很长,最后做一个简单总结,面对100亿数据量,1万列属性,10万吞吐量的业务需求,可以采用了元数据服务、属性服务、搜索服务来解决:

  • 一个解决存储问题

  • 一个解决品类解耦问题

  • 一个解决检索问题


任何复杂问题的解决,都是 循序渐进

思路比结论重要,希望大家有收获。

本文转自“架构师之路”公众号,58沈剑提供。

目录
相关文章
|
23天前
|
消息中间件 存储 缓存
十万订单每秒热点数据架构优化实践深度解析
【11月更文挑战第20天】随着互联网技术的飞速发展,电子商务平台在高峰时段需要处理海量订单,这对系统的性能、稳定性和扩展性提出了极高的要求。尤其是在“双十一”、“618”等大型促销活动中,每秒需要处理数万甚至数十万笔订单,这对系统的热点数据处理能力构成了严峻挑战。本文将深入探讨如何优化架构以应对每秒十万订单级别的热点数据处理,从历史背景、功能点、业务场景、底层原理以及使用Java模拟示例等多个维度进行剖析。
49 8
|
24天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
196 7
|
24天前
|
数据采集 搜索推荐 数据管理
数据架构 CDP 是什么?
数据架构 CDP 是什么?
51 2
|
4月前
|
机器学习/深度学习 数据采集 人工智能
揭秘!47页文档拆解苹果智能,从架构、数据到训练和优化
【8月更文挑战第23天】苹果公司发布了一份47页的研究文档,深入解析了其在智能基础语言模型领域的探索与突破。文档揭示了苹果在此领域的雄厚实力,并分享了其独特的混合架构设计,该设计融合了Transformer与RNN的优势,显著提高了模型处理序列数据的效能与表现力。然而,这种架构也带来了诸如权重平衡与资源消耗等挑战。苹果利用海量、多样的高质量数据集训练模型,但确保数据质量及处理噪声仍需克服。此外,苹果采取了自监督与无监督学习相结合的高效训练策略,以增强模型的泛化与稳健性,但仍需解决预训练任务选择及超参数调优等问题。
155 66
|
2月前
|
存储 大数据 数据处理
洞察未来:数据治理中的数据架构新思维
数据治理中的数据架构新思维对于应对未来挑战、提高数据处理效率、加强数据安全与隐私保护以及促进数据驱动的业务创新具有重要意义。企业需要紧跟时代步伐,不断探索和实践新型数据架构,以洞察未来发展趋势,为企业的长远发展奠定坚实基础。
|
3月前
|
存储 搜索推荐 数据库
MarkLogic在微服务架构中的应用:提供服务间通信和数据共享的机制
随着微服务架构的发展,服务间通信和数据共享成为关键挑战。本文介绍MarkLogic数据库在微服务架构中的应用,阐述其多模型支持、索引搜索、事务处理及高可用性等优势,以及如何利用MarkLogic实现数据共享、服务间通信、事件驱动架构和数据分析,提升系统的可伸缩性和可靠性。
53 5
|
4月前
|
安全 网络安全 数据安全/隐私保护
云原生技术探索:容器化与微服务架构的实践之路网络安全与信息安全:保护数据的关键策略
【8月更文挑战第28天】本文将深入探讨云原生技术的核心概念,包括容器化和微服务架构。我们将通过实际案例和代码示例,展示如何在云平台上实现高效的应用部署和管理。文章不仅提供理论知识,还包含实操指南,帮助开发者理解并应用这些前沿技术。 【8月更文挑战第28天】在数字化时代,网络安全和信息安全是保护个人和企业数据的前线防御。本文将探讨网络安全漏洞的成因、加密技术的应用以及提升安全意识的重要性。文章旨在通过分析网络安全的薄弱环节,介绍如何利用加密技术和提高用户警觉性来构建更为坚固的数据保护屏障。
|
4月前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。
|
4月前
|
Java 数据库连接 微服务
揭秘微服务架构下的数据魔方:Hibernate如何玩转分布式持久化,实现秒级响应的秘密武器?
【8月更文挑战第31天】微服务架构通过将系统拆分成独立服务,提升了可维护性和扩展性,但也带来了数据一致性和事务管理等挑战。Hibernate 作为强大的 ORM 工具,在微服务中发挥关键作用,通过二级缓存和分布式事务支持,简化了对象关系映射,并提供了有效的持久化策略。其二级缓存机制减少数据库访问,提升性能;支持 JTA 保证跨服务事务一致性;乐观锁机制解决并发数据冲突。合理配置 Hibernate 可助力构建高效稳定的分布式系统。
74 0
|
4月前
|
存储 缓存 Java
Android项目架构设计问题之优化业务接口数据的加载效率如何解决
Android项目架构设计问题之优化业务接口数据的加载效率如何解决
48 0