数据工程师必须掌握的7个大数据实战项目

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 值得收藏,数据工程师必须掌握的7个大数据实战项目

原创: Lenis 有关SQL

1
作为一名电影爱好者,我阅片无数,有些片子还经常翻来覆去看个好几遍。小时候因为这事儿,没少被我妈抓耳朵,“看过的片子为啥还要倒二遍?”我也说不上来,就是单纯的爱看。

男人爱看的电影,以武侠,动作,科技为多,也认识了一帮明星,比如尼古拉斯凯奇,史泰龙,李小龙,成龙,李连杰,甄子丹等等。这些人很猛,有男人气。只要是他们的片儿,肯定不落下。在我眼里,他们就是好片代名词。

不知几何时,电影上开始出现一些不认识的男明星了,比如张翰,韩庚,鹿晗等等。看着这些人主演的片子,真是……哎,能不睡着就算是对得起票钱了。

后来我从半佛那里才知道,啥叫鲜肉,啥叫老阿姨审美。假如看到有更嫩的男演员,不用问了,老阿姨审美又变了。注定又是一部烂片。

那么,审美可以变,审词呢?

比如这几年,媒体一直在炒作的大数据,用前卫的词儿来说,Big Data. 听得人耳朵老茧都涨了一层。那么 大家是真把它当做有效的工具呢,还是固执的认为又是换汤不换药的营销噱头呢?

为弄清楚这个问题,我查了很多资料,中文的,外文的,百度文库的, Google 论文。期间的所见所闻可以写 3 部小说还不止。

令我印象最深的还属这件事:
《纽约时报》将 1851 - 1922 之间的 1100 多万篇文章,在24小时内花费3000美金,转成 PDF 供大众搜索查看。

资料背景指出,这些文章已经做好了 TIFF 图档格式,要解决的本质问题就是将 TIFF 转换成 PDF.这件事情,工作量非常大。单纯写代码转换,可行,但对完工时间不好把握。

此时有个工程师,仅凭一人之力完成了这项工作,整个过程,他只做了 4 件事情:

1) 首先他是资深编程爱好者。平常阅读技术Blog,知道 AWS, S3,EC2 等云计算概念,还熟悉 Google 的 MapReduce 论文,并且知道 Hadoop 的功能。

2)于是他自己在他的个人电脑上,搭建了Hadoop,玩起大数据,利用 MapReduce 来试着完成 TIFF 到 PDF 的转换;

3)接着在 Amazon 上申请 4 台 EC2 的主机,搭建了 Hadoop 集群,跑了一批 TIFF 到 PDF 转换程序。发现居然可行。

4)大规模实施批量转换,用了 24 个小时,3000 美金,最终将 1100 万文章的影音图像,转成了 PDF,并对外提供服务。

再举一些经过报道的大数据应用案例:
Yahoo!使用4000节点的集群运行 Hadoop, 支持广告系统和 Web 搜索;
Facebook 使用 1000 节点运行 Hadoop, 存储日志数据,支持其上的数据分析和机器学习;
百度使用 Hadoop 处理每周 200TB 的数据,进行搜索日志分析和网页数据挖掘工作;
中移动基于 Hadoop 开发了 BigCloud 系统,提供对内外的数据支持;
淘宝的 Hadoop 则处理电子商务交易数据。

初学者要入门大数据,最好的方式,从了解具体的应用开始。掌握大数据能做哪些事情,完成哪些小数据做不到的功能,学着才有意思。只有学着有意思,才会继续往下学。越学越想学,越学越开心,自然也就学好了。

接下来,我整理一些大数据已经发挥它真正作用的应用场景,如果你要做大数据项目,肯定离不开这7个范畴。

因此,你说大数据离我们远吗,我说肯定很近。不管你信不信,反正我信了。

2
项目一:数据整合
说到数据整合,我们做数据的人,一般想到的是数据仓库。

image.png

当我们有很多应用,比如 MES, ERP, HR, SALES AND Marketing, CRM 等,每个应用都是一些独立的数据岛,每个使用这些应用的人,都可以从这些应用里面找到自己想要的数据和答案,如果找不到也可以找IT帮你做报表。

但是当我们需要的数据,是整条完整的数据链,这些系统就显得无力了。比如我们要分析每个 ERP 的成本中心,到底分摊到每个车间,每道工序,有多少成本时,仅仅靠ERP就无能为力了,必须将 MES 的数据导入ERP,综合起来分析。此时,ERP数据就会整合部分的MES数据。但本身ERP是排斥这些MES数据的,过于详细,对BOM,PP等的支持粒度不够,需要重新写代码完善。

那么与其把这些数据都导入ERP,再重新编码,那还不如将MES,ERP的数据整合到一个数据库里面,重新出完整的数据字典,供财务或者运营去做分析。这就是数据仓库的作用了。

如果HR也想要从数据中,得到招聘人员的产出,同样也需要整合HR系统。CRM的分析师,可能想知道某个客户的利润,是否与生产成正相关,总不能让利润最少的客户长期霸占工厂的资源吧。因此CRM也可以接入到数据仓库来。

当数据仓库数据量超额时,比如 Oracle 成本已经很高,且计算能力也达不到旺盛的分析需求时,就需要考虑 Hadoop 了。因此 Hadoop 在这里扮演的角色就是数据仓库的落地数据存储和计算。

从传统的数据仓库架构扩展而来,此时企业的数据仓库又多了一层大数据,如下图:

image.png
(图来自mastechinfotrellis.com)

但是也有可能,Hadoop 的离线应用完成了聚合,分析师需要从原有的RDBMS获取,那么我们就需要回写到RDBMS里面来,方便分析师的调用。这里需要说明下为什么要回写关系数据库(SQL类数据库),很多分析师还在使用 Excel 和 Tableau 做数据分析,而这类工具最搭配的便是 RDBMS, SQL 的学习成本放在那里,Excel 的易用性摆在那里,还有 Tableau 漂亮的UI。而从 Hadoop 这类分布式数据系统中,取数分析,需要新型的作战武器, Zepplin 或者 IPython Notebook , 当然这类工具,SQL还是必不可少。

总之,数据整合是 Hadoop 的最基础应用,扮演的可能是最终存储,也有可能是整条数据链上的一环,也就是ETL中的任一角色。

在正式的报告中(官方文档或者公司知识库),大家会采用"企业级数据中心"或者"数据湖"来表示 Hadoop 的这类应用。

为什么要用 Hadoop 而不是传统的 Teradata 和 Netezza 呢?
很大的原因,Teradata, Netezza 的成本不是一般的高,如果用来存储一些非交易性的数据,造成很大的资源成本。比如评论,用户行为,这些完全可以存储在 Hadoop 的低成本集群中

项目二:专业分析

在《Spark高级数据分析》这本书里讲到一个实例,就是:
Estimating Financial Risk Through Monte Carlo Simulation

蒙特卡洛模拟分析,用来预测和监控银行流动性风险。这类专业应用,一般的软件公司并不会去考虑如何兼容,如何做的性能更优,比如数据量巨大的情况下,R有什么特别好的方法去处理,T-SQL会怎么处理,恐怕都无能为力?

针对有限的数据量,上述两个工具会 有不错的效果,但如今的数据量堆积下,要将原本一台单机提供的算力,复制到成千上百台计算机,传统的RDBMS和分析工具都会失效。

此时,Hadoop 配合 Spark 的组合,就有用武之地了!

众所周知,Yahoo!已有4000个Hadoop节点,用这4000个节点去计算一次聚合统计,比如有4亿的订单,需要核算每个订单的总金额,成本,和利润,那分配到4000个节点上,每个节点平均处理10万订单,之后汇总即可。

所以 Hadoop 可以处理更多的量,而 Spark 则在更快的计算上满足了需求。

拿 Spark 举个例子,比如推荐系统。喜爱音乐的朋友会用网易云音乐,喜欢看书的朋友经常会去亚马逊。不难发现的事情是,当你打开这些 App 的时候,会有很多音乐或者书推荐给你,你打开这些推荐的音乐或者书,可能还会觉得很好,正是自己喜欢或者需要的。这就是推荐系统。

推荐系统最大的难点在于实时性。我们可以用 Hadoop 聚合全部人的喜好,进一步去做实时推荐。而 Hadoop 的计算框架,要搭配 MapReduce 程序使用,这类程序最大的弱点是中间结果集存盘,而不是存在内存,那么对于推荐中经常使用的 ALS(Alternating Least Squares )算法就不友好了。这类训练算法需要无数次回头重读中间结果集,每次从硬盘读取结果(有可能还要重算),就会浪费极大的时间。

Spark 就是在解决这个问题。

它将所有的数据集封装在 RDD(Resilient Distributed Dataset)中,这个结果集天然就带着分布式特性,也就是每个Spark节点上都有一个小的RDD,针对RDD的计算都会分摊到这些小的RDD上,同步计算。这个特性满足了分布式并行计算的需求,RDD还有个特性就是Cache操作,将RDD的结果缓存到内存保存,之后可以复用RDD结果集。这是Spark区别于MapReduce的重要特点,简单说来,就是整个计算过程变快了,使得实时推荐也变成了可能。

image.png

看上去,我们只提交了一个Spark Job,完成对输入数据的处理,并且输出结果。没有特别厉害的地方。但背后做了很大的工作,它均衡地在每个数据节点上分配处理算子(Executor),做本地处理,之后将这些中间结果集缓存起来,以提供给其他子程序使用。

项目三:大数据作为服务

通常企业足够大,就会自建 Hadoop 集群用来满足数据整合或者专业分析的需求。当企业拥有自主开发 Hadoop 实力之后,会有多余的计算资源可以分享给其他企业用户,那么这时可以把 Hadoop 作为服务开放给市场。

这就是云计算的力量。

国外的案例有 GCP(Google Cloud Platform), Amazon, Microsoft Azure, 而国内出色的供应商则是HTA(华为云,腾讯云和阿里云).

要说明的是,Hadoop 作为云服务的一种,需要很强的技术性。针对创业型或资源短缺性的中小企业,则可以付费使用大公司提供的服务,大家各得其所。

云计算:基本概念

云计算目前可分为 IAAS,SAAS,PAAS,这三者在使用上有很大区别。

都说云计算有不可替代的成本优势,那么成本到底优化在哪里?

比如公司如果内建一个运维团队,包括硬件,软件与人员,配套的基础设施有机房,办公楼。再简单一些,这团队由一个人,一台服务器,一个办公室组成,软件全部由这个人来编写,采用的全部是开源技术,一年的费用算50万。

而这些采用云计算,这个人负责编程没变,但是可以在咖啡馆,图书馆,高铁,飞机,任何只要有网线的地方即可,这样就省去办公楼,硬件与软件的采购费用,主要成本都在云上和应用的开发人员身上。云上有专业的Devops团队,有DBA专业人员保障基础设施,还有可靠的机房双灾备,一切后顾之忧都交给了云服务商。按照腾讯云最新的企业云服务器,一年下来就3,500千块。

即买即用,部署极速

某天公司需要使用 Hadoop 的离线大容量存储来容纳日志,并且用 MapReduce 负责超大规模的计算,那么自建一个大数据团队,负责装机,配置和搭建,可能要花去1个月左右的时间,同时还需要进行业务的梳理和代码的编写,等到系统完毕,上线调试,这样大半时间下去了,效果还出不来。

而使用云计算,接口调试好,今天就可以导入数据,极大节约了时间成本。

如果云服务商对于每次查询都需要结算,而大数据又是公司避不可避的战略,那么内建也不是大问题。但往往公司业务还没成熟呢,就急着去部署大数据系统是不划算的。

云计算:IAAS, SAAS, PAAS 的区别:

通过NYT(NewYorkTimes)的4T TIFF图片数据转PDF的事件,我们来说明这三者的区别,就很容易了:

详细案例:https://t.zsxq.com/QrBmeaY

这个案例中,作者通过购买Amazon EC2 的100台服务器,将S3的4T文件转成PDF,并最终提供给大众搜索。

正好将IAAS,SAAS都涉及到了。比如 EC2,S3就是典型的IAAS,提供服务器操作系统,存储,网络,就是典型的IAAS应用;而最终开发的PDF搜索就是SAAS应用;如果作者不是自己写MapReduce来转换PDF,而是使用AWS提供的编辑软件,且使用了AWS的Hadoop, Spark作业接口实现了转换,那么PAAS也就被用到了。可能当时AWS并没有提供这样整套的开发环境。

如果你是微信小程序开发者,不难理解,小程序的开发就是在PAAS平台上完成的。

项目四:流分析

流和流式计算一直存在于应用场景中,但在大数据未出现之前,一直做的不好。之前业界一直使用低延迟来对流进行处理,但是流的实时性,低延迟编程方法就显得笨拙了。

之前我有文章对流处理做过详细的科普,可以看这里:

http://dwz.win/uCZ

此时虽然看起来与Hadoop没有啥关系了,主要担任重责的是 Storm, Flink, Spark, 但最终落地数据的,还是Hadoop.

举两个实时流分析的例子:

银行风控:如果依据模型检测到有大量小额连续的取款,那么就有可能是洗钱。此时应当场冻结账户,而不是等到整个取款过程结束,通过跑批次去检测某账户洗钱,再进行追溯,冻结。无论是低延迟还是分批处理,都不足以弥补账户的损失,只有实时流分析才可以解决这个场景应用。

库存管控:比如双11,双12的在线秒杀,如果2万件iPhone11半折秒,疯抢的人数达到2000万,那么对于实时库存就要计算很精确。就像有些公司搞的饥饿营销,不到1s,上百万手机一抢而空,造成假象,带给消费者的印象就low了。

以上只是流分析的冰山一角,只要有需求存在就有流分析存在。但也不是所有场景都需要流分析来处理,有些历史统计或者预测分析,还是通过跑批的方式,成本会更小。

项目五:复杂的事件处理

事件有两个维度的属性,时间与时长。

在时间线上保持连续不断发生的事件,形成一个流,就像是水龙头出来的水一样,只有积累多了才能派上用场,针对这类数据做处理,我们称之为流式处理;孤立这段时间,选取当前时间点发生的事件,做单独的处理,那就是实时处理。

这类项目里,复杂度就是针对时间点的细化,可以是 millisecond(毫秒), nanosecond(纳秒:十亿分之一秒), picosecond(皮秒:一万亿分之一秒).

有的领域,比如邮件的收发,评论的发布,在秒级实现是可以接受的。而有些领域,比如量化交易,需要在更精细粒度时间上做挂单和撤单,时间差加上大资金量,能够获得很好的受益。

实际上,我们发评论时,在点击发布到获得显示这段时间,哪怕是1-2秒,中间也可做很多处理,比如限流,关键字与舆情评判,内容分发。

综上,在时间维度上做实时处理,是件复杂的事情。

之前,处理这类实时数据,最有效的方法是加缓存,加消息队列,其原理是假定消息处理不完,就先缓存起来,经由处理方慢慢处理。现在这类需求也可以这样处理,借助 Redis, MessageQ, Kafka 等软件,做到低延迟处理。

但在如今数据呈井喷式暴涨的互联网,使用队列处理显得明显低效,还可能导致数据大量积压而无法处理。所以增加10倍,100倍,甚至1000倍机器来并行处理,变成了当今唯一可解决的方法。

比如在交通灯处,增加传感器,增加摄像头,使用 Spark, Storm, Flink, Apex Project 来实时传导Iot数据,使得交管局可以实时监控路面拥堵情况,违规行为甚至犯罪行为等。

项目六:流式ETL

这是一种特殊的数据整合方法,与传统的批次处理不一样的是,在时间的时长维度上做了无限流的处理。除了做数据的分包转发之外,流式ETL还可以做专业分析,并将分析结果再分包转发。

从宏观来看,ETL既可以有跑批的步骤,还能包含流式计算的步骤。

上述的5种项目中,都可以涉及到这种项目的设计。

image.png
(图来自Confluent公司)

互联网时代,慢,正在成为用户流失的重大因素。在每个数据接口实现流式ETL变得非常有必要,实现数据流动无断点,建立 Streaming Platform 变得越来越重要。

最适合用来搭建流式ETL的工具,Kafka.

一旦消息入库(Kafka),我们要做的事情就像是从水库接水一样,接入管道即可。

image.png
(图来自Confluent公司)

NetFlix公司在Kafka实时流式处理方面有前卫的探索,在这里一窥究竟:

image.png

项目七:可视化分析

市面上很多统计分析软件都比较昂贵,他们独有的算法搭配内建的可视化展现组件,经过多年市场检验,越磨越好用。但成本上就是下不去,比如 SAS.

但如今大数据量的市场下,这些传统供应商显得不够友好,因此催生了iPython Notebook, Zeppelin 等一系列可直接用于大数据的可视化分析工具。尤其Python,Spark社群在机器学习,深度学习软件库上的开发,使得整个大数据统计分析生态日臻完美,不仅对数据挖掘算法有友好的支持,对数据可视化组件也提供了开箱即用的软件包。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
202 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
572 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
70 2
|
15天前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试
|
2月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
123 1
|
2天前
|
数据采集 存储 分布式计算
解密大数据:从零开始了解数据海洋
解密大数据:从零开始了解数据海洋
38 17
|
2月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
134 4
|
2月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
35 4
|
2月前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
81 3