前端智能化漫谈 (3) - pix2code推理部分解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: # 前端智能化漫谈 (3) - pix2code推理部分解析 上一节我们将pix2code的流程梳理了一遍,相信大家已经都可以跑起来了。 在谈pix2code的算法改进之前,关于训练和推理过程还有若干细节我们还需要进一步讨论一下。 ## onehot编码 上次我们讲到create_binary_representation,就是将单词转换成one hot编码。 ```

前端智能化漫谈 (3) - pix2code推理部分解析

上一节我们将pix2code的流程梳理了一遍,相信大家已经都可以跑起来了。
在谈pix2code的算法改进之前,关于训练和推理过程还有若干细节我们还需要进一步讨论一下。

onehot编码

上次我们讲到create_binary_representation,就是将单词转换成one hot编码。

    def create_binary_representation(self):
        if sys.version_info >= (3,):
            items = self.vocabulary.items()
        else:
            items = self.vocabulary.iteritems()
        for key, value in items:
            binary = np.zeros(self.size)
            binary[value] = 1
            self.binary_vocabulary[key] = binary

生成的one hot编码如下所示,有20个token,所以每一个token是一个20维的向量:

<START>-> 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
<END>-> 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
 -> 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
stack-> 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
{-> 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
-> 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
row-> 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
switch-> 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
}-> 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
label-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
,-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.
btn-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.
radio-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.
footer-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.
btn-home-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.
btn-notifications-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.
check-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.
slider-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.
btn-dashboard-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.
btn-search-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.

上面这个存在bin目录下的words.vocab文件中,是我们的词表。将来预测出来的是这20项中每一项的概率,最终我们还要反查词表来确定内容。

其中几个常量定义如下:

START_TOKEN = "<START>"
END_TOKEN = "<END>"
PLACEHOLDER = " "
SEPARATOR = '->'

推理

解释了one hot编码之后,训练部分的逻辑大家应该比较清楚了。但是对于如何利用训练好的结果进行推理,可能还是有疑惑。所以我们下面讲解下推理的过程。

首先是加载模型,并且读取图片:

meta_dataset = np.load("{}/meta_dataset.npy".format(trained_weights_path))
input_shape = meta_dataset[0]
output_size = meta_dataset[1]

model = pix2code(input_shape, output_size, trained_weights_path)
model.load(trained_model_name)

sampler = Sampler(trained_weights_path, input_shape, output_size, CONTEXT_LENGTH)

file_name = basename(input_path)[:basename(input_path).find(".")]
evaluation_img = Utils.get_preprocessed_img(input_path, IMAGE_SIZE)

然后是核心的搜索逻辑。搜索模式有两种,一种是greedy模式,另一种是指定深度的beam search:

if search_method == "greedy":
    result, _ = sampler.predict_greedy(model, np.array([evaluation_img]))
    print("Result greedy: {}".format(result))
else:
    beam_width = int(search_method)
    print("Search with beam width: {}".format(beam_width))
    result, _ = sampler.predict_beam_search(model, np.array([evaluation_img]), beam_width=beam_width)
    print("Result beam: {}".format(result))

贪婪模式

我们先看下greedy模式下的玩法:

    def predict_greedy(self, model, input_img, require_sparse_label=True, sequence_length=150, verbose=True):
        current_context = [self.voc.vocabulary[PLACEHOLDER]] * (self.context_length - 1)
        current_context.append(self.voc.vocabulary[START_TOKEN])
        if require_sparse_label:
            current_context = Utils.sparsify(current_context, self.output_size)

current_context先用占位符填满,然后变成one hot编码,变成下面这样:

[[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

然后我们继续往下看:

        predictions = START_TOKEN
        out_probas = []

        for i in range(0, sequence_length):
            if verbose:
                print("predicting {}/{}...".format(i, sequence_length))

如果想看进度条,就可以将verbose开关打开。打开之后的过程是下面这样的:

predicting 0/150...
<START>stack
predicting 1/150...
<START>stack{
predicting 2/150...
<START>stack{

predicting 3/150...
<START>stack{
row
predicting 4/150...
<START>stack{
row{
predicting 5/150...
<START>stack{
row{

predicting 6/150...
<START>stack{
row{
btn-dashboard

下面开始进入预测的部分:

            probas = model.predict(input_img, np.array([current_context]))
            prediction = np.argmax(probas)
            out_probas.append(probas)

probas是根据训练结果计算的在当前情况下的对于20个标签的概率情况。
例如第一步时假设是这样的:

[3.5372774e-10 1.5484280e-15 3.7052250e-14 9.9999964e-01 4.1679780e-07
 2.5872908e-14 3.7647421e-15 4.0136690e-14 7.4600746e-14 2.8354120e-13
 3.3076447e-13 2.4662578e-15 2.2618040e-13 2.2254247e-14 4.2132672e-10
 2.3889449e-10 1.8945574e-13 1.2084879e-13 1.7556612e-10 3.4896117e-10]

此时有99.99%的概率是第3个,prediction的结果为3。

下面我们开始处理将新预测的结果添加到current_context里面,因为RNN网络是根据序列预测的。我们先建立一个new_context,然后将current_context的所有内容上移一位,也就是将第0行不要了,从第1行开始取到最后一行:

            new_context = []
            for j in range(1, self.context_length):
                new_context.append(current_context[j])

下面将我们刚才新预测出来的添加到最后一行:

            if require_sparse_label:
                sparse_label = np.zeros(self.output_size)
                sparse_label[prediction] = 1
                new_context.append(sparse_label)
            else:
                new_context.append(prediction)

            current_context = new_context

接着,我们去词汇表里查一下prediction所对应的单词,记得我们本讲开头所介绍的词表么,就是查那个表:

            predictions += self.voc.token_lookup[prediction]

最后,我们判断一下预测结果是不是到了END_TOKEN,如果是的话就结束本轮预测。

            if self.voc.token_lookup[prediction] == END_TOKEN:
                break

        return predictions, out_probas
目录
相关文章
|
29天前
|
人工智能 移动开发 前端开发
WeaveFox:蚂蚁集团推出 AI 前端智能研发平台,能够根据设计图直接生成源代码,支持多种客户端和技术栈
蚂蚁团队推出的AI前端研发平台WeaveFox,能够根据设计图直接生成前端源代码,支持多种应用类型和技术栈,提升开发效率和质量。本文将详细介绍WeaveFox的功能、技术原理及应用场景。
880 66
WeaveFox:蚂蚁集团推出 AI 前端智能研发平台,能够根据设计图直接生成源代码,支持多种客户端和技术栈
|
2月前
|
机器学习/深度学习 安全 大数据
揭秘!企业级大模型如何安全高效私有化部署?全面解析最佳实践,助你打造智能业务新引擎!
【10月更文挑战第24天】本文详细探讨了企业级大模型私有化部署的最佳实践,涵盖数据隐私与安全、定制化配置、部署流程、性能优化及安全措施。通过私有化部署,企业能够完全控制数据,确保敏感信息的安全,同时根据自身需求进行优化,提升计算性能和处理效率。示例代码展示了如何利用Python和TensorFlow进行文本分类任务的模型训练。
153 6
|
3月前
|
人工智能
歌词结构的巧妙安排:写歌词的方法与技巧解析,妙笔生词AI智能写歌词软件
歌词创作是一门艺术,关键在于巧妙的结构安排。开头需迅速吸引听众,主体部分要坚实且富有逻辑,结尾则应留下深刻印象。《妙笔生词智能写歌词软件》提供多种 AI 功能,帮助创作者找到灵感,优化歌词结构,写出打动人心的作品。
|
17天前
|
Serverless 对象存储 人工智能
智能文件解析:体验阿里云多模态信息提取解决方案
在当今数据驱动的时代,信息的获取和处理效率直接影响着企业决策的速度和质量。然而,面对日益多样化的文件格式(文本、图像、音频、视频),传统的处理方法显然已经无法满足需求。
71 4
智能文件解析:体验阿里云多模态信息提取解决方案
|
2月前
|
机器学习/深度学习 编解码 前端开发
探索无界:前端开发中的响应式设计深度解析####
【10月更文挑战第29天】 在当今数字化时代,用户体验的优化已成为网站与应用成功的关键。本文旨在深入探讨响应式设计的核心理念、技术实现及最佳实践,揭示其如何颠覆传统布局限制,实现跨设备无缝对接,从而提升用户满意度和访问量。通过剖析响应式设计的精髓,我们将一同见证其在现代Web开发中的重要地位与未来趋势。 ####
58 7
|
2月前
|
编解码 前端开发 UED
探索无界:前端开发中的响应式设计深度解析与实践####
【10月更文挑战第29天】 本文深入探讨了响应式设计的核心理念,即通过灵活的布局、媒体查询及弹性图片等技术手段,使网站能够在不同设备上提供一致且优质的用户体验。不同于传统摘要概述,本文将以一次具体项目实践为引,逐步剖析响应式设计的关键技术点,分享实战经验与避坑指南,旨在为前端开发者提供一套实用的响应式设计方法论。 ####
77 4
|
2月前
|
设计模式 前端开发 JavaScript
揭秘!前端大牛们如何巧妙利用JavaScript,打造智能交互体验!
【10月更文挑战第30天】前端开发领域充满了无限可能与创意,JavaScript作为核心语言,凭借强大的功能和灵活性,成为打造智能交互体验的重要工具。本文介绍前端大牛如何利用JavaScript实现平滑滚动、复杂动画、实时数据更新和智能表单验证等效果,展示了JavaScript的多样性和强大能力。
76 4
|
2月前
|
自然语言处理 前端开发 搜索推荐
前端界的黑科技:掌握这些技术,让你的网站秒变智能助手!
【10月更文挑战第30天】随着前端技术的发展,网站正逐渐变成智能助手。本文探讨了四大关键技术:自然语言处理(NLP)使网站理解用户输入;机器学习实现个性化推荐;Web Notifications API发送重要提醒;Web Speech API实现语音交互。通过这些技术,网站不仅能更好地理解用户,还能提供更智能、个性化的服务,提升用户体验。
60 3
|
2月前
|
缓存 前端开发 JavaScript
"面试通关秘籍:深度解析浏览器面试必考问题,从重绘回流到事件委托,让你一举拿下前端 Offer!"
【10月更文挑战第23天】在前端开发面试中,浏览器相关知识是必考内容。本文总结了四个常见问题:浏览器渲染机制、重绘与回流、性能优化及事件委托。通过具体示例和对比分析,帮助求职者更好地理解和准备面试。掌握这些知识点,有助于提升面试表现和实际工作能力。
75 1
|
2月前
|
前端开发 JavaScript 开发者
揭秘前端高手的秘密武器:深度解析递归组件与动态组件的奥妙,让你代码效率翻倍!
【10月更文挑战第23天】在Web开发中,组件化已成为主流。本文深入探讨了递归组件与动态组件的概念、应用及实现方式。递归组件通过在组件内部调用自身,适用于处理层级结构数据,如菜单和树形控件。动态组件则根据数据变化动态切换组件显示,适用于不同业务逻辑下的组件展示。通过示例,展示了这两种组件的实现方法及其在实际开发中的应用价值。
52 1

热门文章

最新文章

推荐镜像

更多