独家 | 教你使用简单神经网络和LSTM进行时间序列预测(附代码)

简介: 作者基于波动性标准普尔500数据集和Keras深度学习网络框架,利用python代码演示RNN和LSTM RNN的构建过程,便于你快速搭建时间序列的预测模型。

翻译:张玲

校对:丁楠雅

文章来源:微信公众号 数据派THU

本文约1500字,建议阅读5分钟。


作者基于波动性标准普尔500数据集和Keras深度学习网络框架,利用python代码演示RNN和LSTM RNN的构建过程,便于你快速搭建时间序列的预测模型。

image.png

图片来源:Pixabay

本文的目的是演示人工神经网络(Artificial Neural Network ,ANN)和长短期记忆循环神经网络(Long Short-Term Memory Recurrent Neural Network ,LSTM RNN)工作过程,使您能够在现实生活中使用它们,并对时间序列数据建立最简单的ANN和LSTM循环神经网络。

人工神经网络(Artificial Neural Network ,ANN)

https://en.wikipedia.org/wiki/Artificial_neural_network

长短期记忆循环神经网络(Long Short-Term Memory Recurrent Neural Network ,LSTM RNN)

https://en.wikipedia.org/wiki/Long_short-term_memory

数据

CBOE(Chicago Board Options Exchange,芝加哥期权交易所)波动性指数是用来衡量标准普尔500指数期权的一种常用隐含波动率,以其代号VIX(Volatility Index,也称“恐惧指数”)而闻名。

CBOE(Chicago Board Options Exchange,芝加哥期权交易所)波动性指数

https://en.wikipedia.org/wiki/VIX

芝加哥期权交易所CBOE实时计算出VIX指数后,将其推出。

芝加哥期权交易所

https://en.wikipedia.org/wiki/Chicago_Board_Options_Exchange

首先,我们需要导入以下库:

import pandas as pd

import numpy as np

%matplotlib inline

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import r2_score

from keras.models import Sequential

from keras.layers import Dense

from keras.callbacks import EarlyStopping

from keras.optimizers import Adam

from keras.layers import LSTM

并将数据加载到Pandas 的dataframe中。

df = pd.read_csv("vix_2011_2019.csv")

我们可以快速浏览前几行。

print(df.head())

image.png

删除不需要的列,然后将“日期”列转换为时间数据类型,并将“日期”列设置为索引。

df.drop(['Open', 'High', 'Low', 'Close', 'Volume'], axis=1, inplace=True)

df['Date'] = pd.to_datetime(df['Date'])

df = df.set_index(['Date'], drop=True)

df.head(10)

image.png

接下来,我们绘制一个时间序列线图。

plt.figure(figsize=(10, 6))

df['Adj Close'].plot();

image.png

可以看出,“Adj close”数据相当不稳定,既没有上升趋势,也没有下降趋势。

按日期“2018–01–01”将数据拆分为训练集和测试集,即在此日期之前的数据是训练数据,此之后的数据是测试数据,我们再次将其可视化。

split_date = pd.Timestamp('2018-01-01')

df = df['Adj Close']

train = df.loc[:split_date]

test = df.loc[split_date:]

plt.figure(figsize=(10, 6))

ax = train.plot()

test.plot(ax=ax)

plt.legend(['train', 'test']);

image.png

我们将训练和测试数据缩放为[-1,1]。

scaler = MinMaxScaler(feature_range=(-1, 1))

train_sc = scaler.fit_transform(train)

test_sc = scaler.transform(test)

获取训练和测试数据。

X_train = train_sc[:-1]

y_train = train_sc[1:]

X_test = test_sc[:-1]

y_test = test_sc[1:]

用于时间序列预测的简单人工神经网络

我们创建一个序列模型。

通过.add()方法添加层。

将“input_dim”参数传递到第一层。

激活函数为线性整流函数Relu(Rectified Linear Unit,也称校正线性单位)。

通过compile方法完成学习过程的配置。

损失函数是mean_squared_error,优化器是Adam。

当监测到loss停止改进时,结束训练。

patience =2,表示经过数个周期结果依旧没有改进,此时可以结束训练。

人工神经网络的训练时间为100个周期,每次用1个样本进行训练。

nn_model = Sequential()

nn_model.add(Dense(12, input_dim=1, activation='relu'))

nn_model.add(Dense(1))

nn_model.compile(loss='mean_squared_error', optimizer='adam')

early_stop = EarlyStopping(monitor='loss', patience=2, verbose=1)

history = nn_model.fit(X_train, y_train, epochs=100, batch_size=1, verbose=1, callbacks=[early_stop], shuffle=False)

image.png

我不会把整个输出结果打印出来,它早在第19个周期就停了下来。

y_pred_test_nn = nn_model.predict(X_test)

y_train_pred_nn = nn_model.predict(X_train)

print("The R2 score on the Train set is:\t{:0.3f}".format(r2_score(y_train, y_train_pred_nn)))

print("The R2 score on the Test set is:\t{:0.3f}".format(r2_score(y_test, y_pred_test_nn)))

image.png

LSTM

LSTM网络的构建和模型编译和人工神经网络相似。

LSTM有一个可见层,它有1个输入。

隐藏层有7个LSTM神经元。

输出层进行单值预测。

LSTM神经元使用Relu函数进行激活。

LSTM的训练时间为100个周期,每次用1个样本进行训练。

lstm_model = Sequential()

lstm_model.add(LSTM(7, input_shape=(1, X_train_lmse.shape[1]), activation='relu', kernel_initializer='lecun_uniform', return_sequences=False))

lstm_model.add(Dense(1))

lstm_model.compile(loss='mean_squared_error', optimizer='adam')

early_stop = EarlyStopping(monitor='loss', patience=2, verbose=1)

history_lstm_model = lstm_model.fit(X_train_lmse, y_train, epochs=100, batch_size=1, verbose=1, shuffle=False, callbacks=[early_stop])

image.png

训练早在第10个周期就停了下来。

y_pred_test_lstm = lstm_model.predict(X_test_lmse)

y_train_pred_lstm = lstm_model.predict(X_train_lmse)

print("The R2 score on the Train set is:\t{:0.3f}".format(r2_score(y_train, y_train_pred_lstm)))

print("The R2 score on the Test set is:\t{:0.3f}".format(r2_score(y_test, y_pred_test_lstm)))

image.png

训练和测试R^2均优于人工神经网络模型。

比较模型

我们比较了两种模型的测试MSE

nn_test_mse = nn_model.evaluate(X_test, y_test, batch_size=1)

lstm_test_mse = lstm_model.evaluate(X_test_lmse, y_test, batch_size=1)

print('NN: %f'%nn_test_mse)

print('LSTM: %f'%lstm_test_mse)

image.png

进行预测

nn_y_pred_test = nn_model.predict(X_test)

lstm_y_pred_test = lstm_model.predict(X_test_lmse)

plt.figure(figsize=(10, 6))

plt.plot(y_test, label='True')

plt.plot(y_pred_test_nn, label='NN')

plt.title("NN's Prediction")

plt.xlabel('Observation')

plt.ylabel('Adj Close Scaled')

plt.legend()

plt.show();

image.png

plt.figure(figsize=(10, 6))

plt.plot(y_test, label='True')

plt.plot(y_pred_test_lstm, label='LSTM')

plt.title("LSTM's Prediction")

plt.xlabel('Observation')

plt.ylabel('Adj Close scaled')

plt.legend()

plt.show();

image.png

就是这样!在这篇文章中,我们发现了如何采用python语言基于Keras深度学习网络框架,开发用于时间序列预测的人工神经网络和LSTM循环神经网络,以及如何利用它们更好地预测时间序列数据。

原文标题:

An Introduction on Time Series Forecasting with Simple Neural Networks & LSTM

原文链接:

https://www.kdnuggets.com/2019/04/introduction-time-series-forecasting-simple-neural-networks-lstm.html

编辑:王菁

校对:龚力

译者简介

张玲,在岗数据分析师,计算机硕士毕业。从事数据工作,需要重塑自我的勇气,也需要终生学习的毅力。但我依旧热爱它的严谨,痴迷它的艺术。数据海洋一望无境,数据工作充满挑战。感谢数据派THU提供如此专业的平台,希望在这里能和最专业的你们共同进步!

翻译组招募信息

工作内容:将选取好的外文前沿文章准确地翻译成流畅的中文。如果你是数据科学/统计学/计算机专业的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友,数据派翻译组欢迎你们加入!

你能得到:提高对于数据科学前沿的认知,提高对外文新闻来源渠道的认知,海外的朋友可以和国内技术应用发展保持联系,数据派团队产学研的背景为志愿者带来好的发展机遇。

其他福利:和来自于名企的数据科学工作者,北大清华以及海外等名校学生共同合作、交流。

目录
相关文章
|
6月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
330 0
|
8月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
4月前
|
机器学习/深度学习 自然语言处理 PyTorch
21_RNN与LSTM:序列建模的经典方法
在自然语言处理领域,处理序列数据是一个核心挑战。传统的机器学习方法难以捕捉序列中的时序依赖关系,而循环神经网络(Recurrent Neural Network,RNN)及其变种长短期记忆网络(Long Short-Term Memory,LSTM)通过其独特的循环结构,为序列建模提供了强大的解决方案。本教程将深入探讨RNN和LSTM的原理、实现方法和最新应用,帮助读者全面掌握这一NLP核心技术。
|
5月前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
147 0
|
5月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
870 0
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
8月前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
8月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容包含时间序列预测算法的相关资料,涵盖以下几个方面:1. 算法运行效果预览(无水印);2. 运行环境为Matlab 2022a/2024b;3. 提供部分核心程序,完整版含中文注释及操作视频;4. 理论概述:结合时间卷积神经网络(TCN)与鲸鱼优化算法(WOA),优化TCN超参数以提升非线性时间序列预测性能。通过因果卷积层与残差连接构建TCN模型,并用WOA调整卷积核大小、层数等参数,实现精准预测。适用于金融、气象等领域决策支持。

热门文章

最新文章