Spark + AI summit 2019北美技术峰会华丽落幕

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 本次SAIC含盖了数据工程与数据科学的内容,包括AI产品化的最佳实践案例分享:超大数据规模下,利用流数据处理确保训练数据更新的时效性,完成数据质量监控,测试以及数据模型服务。也有对流行的软件框架如TensorFlow,SciKit-Learn,Keras,PyTorch,DeepLearning4J,BigDL以及Deep Learning Pipelines等,分别进行深入的主题分享探讨。

| 导语

Apache Spark社区最大的技术峰会,SPARK + AI 峰会(SAIC),于4月23-25日,在美国旧金山落下帷幕。

数据与人工智能需要结合:最佳的人工智能应用,需要有大量大规模持续更新的训练数据,方能构建其最佳的数据模型,时至今日,Apache Spark已成为独特的一体化数据分析引擎,它集成了大规模数据处理和领先的机器学习与人工智能算法。

本次SAIC含盖了数据工程与数据科学的内容,包括AI产品化的最佳实践案例分享:超大数据规模下,利用流数据处理确保训练数据更新的时效性,完成数据质量监控,测试以及数据模型服务。也有对流行的软件框架如TensorFlow,SciKit-Learn,Keras,PyTorch,DeepLearning4J,BigDL以及Deep Learning Pipelines等,分别进行深入的主题分享探讨。

除了Spark + AI主题外,本次峰会,为开发者,数据科学家以及探寻最佳数据与人工智能工具来构架创新型产品的技术实践者们,提供了一站式交流的独特体验,超过了5000名来自世界各地的工程师,数据科学家,人工智能专家,研究学者以及商务人士,加入到了这3天的深度交流与学习中。

| SAIC主题分享包括了如下内容:

  • Apache Spark的下一步计划
  • 机器学习产品化的最佳实践
  • 用MLflow来管理机器学习生命周期
  • 最新的机器学习与深度学习框架进展
  • 数据与人工智能一体化数据分析平台
  • 人工智能应用实践案例分享
  • Apache Spark的应用案例分享
  • 结构化与持续流数据处理应用

| 分论坛也提供为来自不同技术背景人士提供了多样化的议题选择:

  • 人工智能
  • 数据科学
  • 深度学习技术
  • 机器学习产品
  • 开发者
  • 企业专场
  • Python与高级数据分析
  • 前沿学术研究
  • 技术实现深入探讨
  • Apache Spark应用与生态

| PPT下载地址

https://www.slidestalk.com/x/3623/saic_2019_na

原文链接

https://mp.weixin.qq.com/s/CSTqXHCpJPvlkVAeaY1mIw

为 Spark 爱好者提供一个交流技术和传递资讯的平台,在这里你可以掌握大数据计算领域最前沿的资讯,可以与 Spark 技术大牛面对面交流,还有不定期社区福利领取哟~

image

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
4天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
26 2
|
5天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
23 1
|
16天前
|
人工智能 关系型数据库 数据中心
2024 OCP全球峰会:阿里云为代表的中国企业,引领全球AI网络合作和技术创新
今年的OCP(Open Compute Project)峰会于2024年10月14日至17日在美国加州圣何塞举行,在这场全球瞩目的盛会上,以阿里云为代表的中国企业,展示了他们在AI网络架构、液冷技术、SRv6和广域网等前沿领域的强大创新能力,持续引领全球合作与技术创新。
|
19天前
|
人工智能 运维 关系型数据库
携手UALink,阿里云磐久AI Infra 2.0服务器亮相2024 OCP全球峰会
阿里云服务器研发受邀和UALink联盟一起,在OCP全球峰会上重点阐述AI服务器Scale UP互连技术领域发展趋势
|
2月前
|
分布式计算 Java Apache
Apache Spark Streaming技术深度解析
【9月更文挑战第4天】Apache Spark Streaming是Apache Spark生态系统中用于处理实时数据流的一个重要组件。它将输入数据分成小批次(micro-batch),然后利用Spark的批处理引擎进行处理,从而结合了批处理和流处理的优点。这种处理方式使得Spark Streaming既能够保持高吞吐量,又能够处理实时数据流。
69 0
|
4月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
143 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
4月前
|
分布式计算 Apache Spark
|
5月前
|
分布式计算 Hadoop 大数据
大数据技术:Hadoop与Spark的对比
【6月更文挑战第15天】**Hadoop与Spark对比摘要** Hadoop是分布式系统基础架构,擅长处理大规模批处理任务,依赖HDFS和MapReduce,具有高可靠性和生态多样性。Spark是快速数据处理引擎,侧重内存计算,提供多语言接口,支持机器学习和流处理,处理速度远超Hadoop,适合实时分析和交互式查询。两者在资源占用和生态系统上有差异,适用于不同应用场景。选择时需依据具体需求。
|
6月前
|
分布式计算 Hadoop 大数据
探索大数据技术:Hadoop与Spark的奥秘之旅
【5月更文挑战第28天】本文探讨了大数据技术中的Hadoop和Spark,Hadoop作为分布式系统基础架构,通过HDFS和MapReduce处理大规模数据,适用于搜索引擎等场景。Spark是快速数据处理引擎,采用内存计算和DAG模型,适用于实时推荐和机器学习。两者各有优势,未来将继续发展和完善,助力大数据时代的发展。
|
5月前
|
机器学习/深度学习 分布式计算 API
技术好文:Spark机器学习笔记一
技术好文:Spark机器学习笔记一
38 0