Apache Flink Time & Window 深度解析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 作者:邱从贤 1、 Window & Time 介绍 Apache Flink(以下简称 Flink) 是一个天然支持无限流数据处理的分布式计算框架,在 Flink 中 Window 可以将无限流切分成有限流,是处理有限流的核心组件,现在 Flink 中 Window 可以是时间驱动的(Time Window),也可以是数据驱动的(Count Window)。

作者:邱从贤

1、 Window & Time 介绍

Apache Flink(以下简称 Flink) 是一个天然支持无限流数据处理的分布式计算框架,在 Flink 中 Window 可以将无限流切分成有限流,是处理有限流的核心组件,现在 Flink 中 Window 可以是时间驱动的(Time Window),也可以是数据驱动的(Count Window)。

下面的代码是在 Flink 中使用 Window 的两个示例

2、 Window API 使用

从第一部分我们已经知道 Window 的一些基本概念,以及相关 API,下面我们以一个实际例子来看看怎么使用 Window 相关的 API。

代码来自 flink-examples

上面的例子中我们首先会对每条数据进行时间抽取,然后进行 keyby,接着依次调用 window(),evictor(), trigger() 以及 maxBy()。下面我们重点来看 window(), evictor() 和 trigger() 这几个方法。

2.1 WindowAssigner, Evictor 以及 Trigger

window 方法接收的输入是一个WindowAssigner, WindowAssigner 负责将每条输入的数据分发到正确的 window 中(一条数据可能同时分发到多个 Window 中),Flink 提供了几种通用的 WindowAssigner:tumbling window(窗口间的元素无重复),sliding window(窗口间的元素可能重复),session window 以及 global window。如果需要自己定制数据分发策略,则可以实现一个 class,继承自 WindowAssigner。

Tumbling Window

Sliding Window

Session Window

Global Window

evictor 主要用于做一些数据的自定义操作,可以在执行用户代码之前,也可以在执行用户代码之后,更详细的描述可以参考 org.apache.flink.streaming.api.windowing.evictors.Evictor 的 evicBefore 和 evicAfter 两个方法。Flink 提供了如下三种通用的 evictor:

  • CountEvictor 保留指定数量的元素

  • DeltaEvictor 通过执行用户给定的 DeltaFunction 以及预设的 threshold,判断是否删除一个元素。

  • TimeEvictor设定一个阈值 interval,删除所有不再 max_ts - interval 范围内的元素,其中 max_ts 是窗口内时间戳的最大值。

evictor 是可选的方法,如果用户不选择,则默认没有。

trigger 用来判断一个窗口是否需要被触发,每个 WindowAssigner 都自带一个默认的 trigger,如果默认的 trigger 不能满足你的需求,则可以自定义一个类,继承自 Trigger 即可,我们详细描述下 Trigger 的接口以及含义:

  • onElement() 每次往 window 增加一个元素的时候都会触发

  • onEventTime() 当 event-time timer 被触发的时候会调用

  • onProcessingTime() 当 processing-time timer 被触发的时候会调用

  • onMerge() 对两个 trigger 的 state 进行 merge 操作

  • clear() window 销毁的时候被调用

上面的接口中前三个会返回一个 TriggerResult,TriggerResult 有如下几种可能的选择:

  • CONTINUE 不做任何事情

  • FIRE 触发 window

  • PURGE 清空整个 window 的元素并销毁窗口

  • FIRE_AND_PURGE 触发窗口,然后销毁窗口

2.2 Time & Watermark

了解完上面的内容后,对于时间驱动的窗口,我们还有两个概念需要澄清:Time 和 Watermark。

我们知道在分布式环境中 Time 是一个很重要的概念,在 Flink 中 Time 可以分为三种Event-Time,Processing-Time 以及 Ingestion-Time,三者的关系我们可以从下图中得知:

Event Time、Ingestion Time、Processing Time

Event-Time 表示事件发生的时间,Processing-Time 则表示处理消息的时间(墙上时间),Ingestion-Time 表示进入到系统的时间。

在 Flink 中我们可以通过下面的方式进行 Time 类型的设置

env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); // 设置使用 ProcessingTime

了解了 Time 之后,我们还需要知道 Watermark 相关的概念。

我们可以考虑一个这样的例子:某 App 会记录用户的所有点击行为,并回传日志(在网络不好的情况下,先保存在本地,延后回传)。A 用户在 11:02 对 App 进行操作,B 用户在 11:03 操作了 App,但是 A 用户的网络不太稳定,回传日志延迟了,导致我们在服务端先接受到 B 用户 11:03 的消息,然后再接受到 A 用户 11:02 的消息,消息乱序了。

那我们怎么保证基于 event-time 的窗口在销毁的时候,已经处理完了所有的数据呢?这就是 watermark 的功能所在。watermark 会携带一个单调递增的时间戳 t,watermark(t) 表示所有时间戳不大于 t 的数据都已经到来了,未来小于等于t的数据不会再来,因此可以放心地触发和销毁窗口了。下图中给了一个乱序数据流中的 watermark 例子

2.3 迟到的数据

上面的 watermark 让我们能够应对乱序的数据,但是真实世界中我们没法得到一个完美的 watermark 数值 — 要么没法获取到,要么耗费太大,因此实际工作中我们会使用近似 watermark — 生成 watermark(t) 之后,还有较小的概率接受到时间戳 t 之前的数据,在 Flink 中将这些数据定义为 “late elements”, 同样我们可以在 window 中指定是允许延迟的最大时间(默认为 0),可以使用下面的代码进行设置

设置allowedLateness 之后,迟来的数据同样可以触发窗口,进行输出,利用 Flink 的 side output 机制,我们可以获取到这些迟到的数据,使用方式如下:

需要注意的是,设置了 allowedLateness 之后,迟到的数据也可能触发窗口,对于 Session window 来说,可能会对窗口进行合并,产生预期外的行为。

3 Window 内部实现

在讨论 Window 内部实现的时候,我们再通过下图回顾一下 Window 的生命周期

每条数据过来之后,会由 WindowAssigner 分配到对应的 Window,当 Window 被触发之后,会交给 Evictor(如果没有设置 Evictor 则跳过),然后处理 UserFunction。其中 WindowAssigner,Trigger,Evictor 我们都在上面讨论过,而 UserFunction 则是用户编写的代码。

整个流程还有一个问题需要讨论:Window 中的状态存储。我们知道 Flink 是支持 Exactly Once 处理语义的,那么 Window 中的状态存储和普通的状态存储又有什么不一样的地方呢?

首先给出具体的答案:从接口上可以认为没有区别,但是每个 Window 会属于不同的 namespace,而非 Window 场景下,则都属于 VoidNamespace ,最终由 State/Checkpoint 来保证数据的 Exactly Once 语义,下面我们从 org.apache.flink.streaming.runtime.operators.windowing.WindowOperator 摘取一段代码进行阐述

从上面我们可以知道,Window 中的的元素同样是通过 state 进行维护,然后由 Checkpoint 机制保证 Exactly Once 语义。

至此,Time、Window 相关的所有内容都已经讲解完毕,主要包括为什么要有 Window; Window 中的三个核心组件:WindowAssigner、Trigger 和 Evictor;Window 中怎么处理乱序数据,乱序数据是否允许延迟,以及怎么处理迟到的数据;最后我们梳理了整个 Window 的数据流程,以及 Window 中怎么保证 Exactly Once 语义。

更多资讯请访问 Apache Flink 中文社区网站

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
3月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
138 3
|
4天前
|
缓存 监控 数据处理
Flink 四大基石之窗口(Window)使用详解
在流处理场景中,窗口(Window)用于将无限数据流切分成有限大小的“块”,以便进行计算。Flink 提供了多种窗口类型,如时间窗口(滚动、滑动、会话)和计数窗口,通过窗口大小、滑动步长和偏移量等属性控制数据切分。窗口函数包括增量聚合函数、全窗口函数和ProcessWindowFunction,支持灵活的数据处理。应用案例展示了如何使用窗口进行实时流量统计和电商销售分析。
56 28
|
5天前
|
传感器 监控 数据挖掘
Flink 四大基石之 Time (时间语义) 的使用详解
Flink 中的时间分为三类:Event Time(事件发生时间)、Ingestion Time(数据进入系统时间)和 Processing Time(数据处理时间)。Event Time 通过嵌入事件中的时间戳准确反映数据顺序,支持复杂窗口操作。Watermark 机制用于处理 Event Time,确保数据完整性并触发窗口计算。Flink 还提供了多种迟到数据处理方式,如默认丢弃、侧输出流和允许延迟处理,以应对不同场景需求。掌握这些时间语义对编写高效、准确的 Flink 应用至关重要。
60 21
|
3月前
|
消息中间件 分布式计算 大数据
大数据-121 - Flink Time Watermark 详解 附带示例详解
大数据-121 - Flink Time Watermark 详解 附带示例详解
97 0
|
19天前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
74 14
|
2月前
|
消息中间件 存储 负载均衡
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
110 2
|
3月前
|
分布式计算 Java 大数据
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
52 0
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
108 2
|
26天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
26天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

推荐镜像

更多