算法笔记之动态规划(3)

简介: 最优三角剖分 与矩阵连乘的不同点 不同点就在于递归公式的不同,最优三角剖分的递归公式如下:当i=j的时候,mi=0;当i 图解示例 我们以一个凸多边形为例,其每条边的权重如下表所示 g[][] 0 1 2 3 4 5 0 0 2 3 1 5 6 1 2 0 3 4 8 6 2 3.

最优三角剖分

与矩阵连乘的不同点

不同点就在于递归公式的不同,最优三角剖分的递归公式如下:
当i=j的时候,mi=0;
当i

图解示例

我们以一个凸多边形为例,其每条边的权重如下表所示

g[][] 0 1 2 3 4 5
0 0 2 3 1 5 6
1 2 0 3 4 8 6
2 3 3 0 10 13 7
3 1 4 10 0 12 5
4 5 8 13 12 0 3
5 6 6 7 5 3 0

(1)初始化:令mi=0,si=0
(2)计算赋值如下:

| m[][] | 1 | 2 |3 |4 |5|
| ------ | ------ | ------ | ------ | ------ | ------ |
|1| 0 |8|22|40|54|
|2| | 0|17|41|52|
|3|| |0 |35|42|
|4| | | | 0|20|
|5| | | | |0|3

s[][] 1 2 3 4 5
1 0 1 2 3 3
2 0 2 3 3
3 0 3 3
4 0 4
5 0

所以最优权值为m1=54
(3)构造最优解。过程与矩阵快速相乘类似,都是根据s[][]对应的位置来分成子问题,所以首先是看到s1=3,所以分为了v0~ v3 和 v3~v5。

  • 因为v0~v3中有结点,所以子问题1不为空,输出该弦v0v3;同理,输出v3v5。
  • 对于子问题1进行递归,读取s1=2,因为v0~v2有结点,所以输出v0v2……
  • 最后输出的最优解为v0v3,v3v5,v0v2。

代码实现

void  Convexpolygontriangulation()
{
    for(int i = 1 ;i <= n ; i++)    // 初始化
    {
        m[i][i] = 0 ;
        s[i][i] = 0 ;
    }
    for(int d = 2 ;d <= n ; d++)         // 枚举点的个数
      for(int i = 1 ;i <= n - d + 1 ; i++)  // 枚举起始点
      {
          int j = i + d - 1 ;         // 终点
          m[i][j] = m[i+1][j] + g[i-1][i] + g[i][j] + g[i-1][j] ;
          s[i][j] = i ;
          for(int k = i + 1 ;k < j ; k++)     // 枚举中间点
          {
              double temp = m[i][k] + m[k+1][j] + g[i-1][k] + g[k][j] + g[i-1][j] ;
              if(m[i][j] > temp)
              {
                  m[i][j] = temp ;   // 更新最优值
                  s[i][j] = k ;      // 记录中间点
              }
          }
      }
}
void print(int i , int j)  // 输出所有的弦
{
    if(i == j)  return ;
    if(s[i][j]>i)
      cout<<"{v"<<i-1<<"v"<<s[i][j]<<"}"<<endl;
    if(j>s[i][j]+1)
      cout<<"{v"<<s[i][j]<<"v"<<j<<"}"<<endl;
    print(i ,s[i][j]);
    print(s[i][j]+1 ,j);
    //cout<<"{ v"<<i-1<<" , v"<<s[i][j]<<" , v"<<j<<" }"<<endl; //输出所有剖分后的三角形
}

石子合并

递归公式:

设Mini代表从第i堆石子到第j堆石子合并的最小花费,Mini代表从第i堆石子到底k堆石子合并的最小花费,Mink+1代表从第k+1堆石子到第j堆石子合并的最小花费。那么递推式如下:
Mini=0,i=j
Mini=min{mi+mk+1+w(i,j)} i同理,设Maxi代表从第i堆石子到第j堆石子合并的最大花费,Maxi代表从第i堆石子到底k堆石子合并的最大花费,Maxk+1代表从第k+1堆石子到第j堆石子合并的最大花费。那么递推式如下:
Maxi=0,i=j
Maxi=max{mi+mk+1+w(i,j)} i

代码实现

void straight(int a[],int n)
{
    for(int i=1;i<=n;i++)  // 初始化
        Min[i][i]=0, Max[i][i]=0;
    sum[0]=0;
    for(int i=1;i<=n;i++)
       sum[i]=sum[i-1]+a[i];
    for(int v=2; v<=n; v++) // 枚举合并的堆数规模
    {
        for(int i=1; i<=n-v+1; i++) //枚举起始点i
        {
            int j = i + v-1; //枚举终点j
            Min[i][j] = INF; //初始化为最大值
            Max[i][j] = -1; //初始化为-1
            int tmp = sum[j]-sum[i-1];//记录i...j之间的石子数之和
            for(int k=i; k<j; k++) {   //枚举中间分隔点
                Min[i][j] = min(Min[i][j], Min[i][k] + Min[k+1][j] + tmp);
                Max[i][j] = max(Max[i][j], Max[i][k] + Max[k+1][j] + tmp);
            }
        }
    }
}
void Circular(int a[],int n)
{
    for(int i=1;i<=n-1;i++)
        a[n+i]=a[i];
    n=2*n-1;
    straight(a, n);
    n=(n+1)/2;
    min_Circular=Min[1][n];
    max_Circular=Max[1][n];
    for(int i=2;i<=n;i++)
    {
        if(Min[i][n+i-1]<min_Circular)
           min_Circular=Min[i][n+i-1];
        if(Max[i][n+i-1]>max_Circular)
           max_Circular=Max[i][n+i-1];
    }
}

时间复杂度为O(n3)

改进算法

最小值可以用四边形不等式来优化。
复杂度为O(n2)

void get_Min(int n)
{
    for(int v=2; v<=n; v++) // 枚举合并的堆数规模
    {
        for(int i=1; i<=n-v+1; i++) //枚举起始点i
        {
            int j = i + v-1; //枚举终点j
            int tmp = sum[j]-sum[i-1];//记录i...j之间的石子数之和
            int i1=s[i][j-1]>i?s[i][j-1]:i;
            int j1=s[i+1][j]<j?s[i+1][j]:j;
            Min[i][j]=Min[i][i1]+Min[i1+1][j];
            s[i][j]=i1;
            for(int k=i1+1; k<=j1; k++) //枚举中间分隔点
                if(Min[i][k]+ Min[k+1][j]<Min[i][j])
                {
                    Min[i][j]=Min[i][k]+Min[k+1][j];
                    s[i][j]=k;
                }
            Min[i][j]+=tmp;
        }
    }
}

void get_Max(int n)
{
    for(int v=2; v<=n; v++) // 枚举合并的堆数规模
    {
        for(int i=1; i<=n-v+1; i++) //枚举起始点i
        {
            int j = i + v-1; //枚举终点j
            Max[i][j] = -1; //初始化为-1
            int tmp = sum[j]-sum[i-1];//记录i...j之间的石子数之和
            if(Max[i+1][j]>Max[i][j-1])
               Max[i][j]=Max[i+1][j]+tmp;
            else
               Max[i][j]=Max[i][j-1]+tmp;
        }
    }
}

void straight(int a[],int n)
{
    for(int i=1;i<=n;i++)  // 初始化
        Min[i][i]=0, Max[i][i]=0, s[i][i]=0;
    sum[0]=0;
    for(int i=1;i<=n;i++)
       sum[i]=sum[i-1]+a[i];
    get_Min(n);
    get_Max(n);
}
void Circular(int a[],int n)
{
    for(int i=1;i<=n-1;i++)
        a[n+i]=a[i];
    n=2*n-1;
    straight(a, n);
    n=(n+1)/2;
    min_Circular=Min[1][n];
    max_Circular=Max[1][n];
    for(int i=2;i<=n;i++)
    {
        if(Min[i][n+i-1]<min_Circular)
           min_Circular=Min[i][n+i-1];
        if(Max[i][n+i-1]>max_Circular)
           max_Circular=Max[i][n+i-1];
    }
}
相关文章
|
2月前
|
算法 开发者 Python
惊呆了!Python算法设计与分析,分治法、贪心、动态规划...这些你都会了吗?不会?那还不快来学!
【7月更文挑战第10天】探索编程巅峰,算法至关重要。Python以其易读性成为学习算法的首选。分治法,如归并排序,将大问题拆解;贪心算法,如找零问题,每步求局部最优;动态规划,如斐波那契数列,利用子问题解。通过示例代码,理解并掌握这些算法,提升编程技能,面对挑战更加从容。动手实践,体验算法的神奇力量吧!
60 8
|
2月前
|
算法 Python
算法不再难!Python分治法、贪心、动态规划实战解析,轻松应对各种算法挑战!
【7月更文挑战第8天】掌握Python算法三剑客:分治、贪心、动态规划。分治如归并排序,将大问题拆解递归解决;贪心策略在每步选最优解,如高效找零;动态规划利用子问题解,避免重复计算,解决最长公共子序列问题。实例展示,助你轻松驾驭算法!**
51 3
|
1月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
1月前
|
算法 Java 测试技术
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
这篇文章介绍了基于动态规划法的三种算法:解决背包问题的递归和自底向上实现、Warshall算法和Floyd算法,并提供了它们的伪代码、Java源代码实现以及时间效率分析。
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
|
2月前
|
算法 Python
Python算法高手进阶指南:分治法、贪心算法、动态规划,掌握它们,算法难题迎刃而解!
【7月更文挑战第10天】探索Python算法的精华:分治法(如归并排序)、贪心策略(如找零钱问题)和动态规划(解复杂问题)。通过示例代码揭示它们如何优化问题解决,提升编程技能。掌握这些策略,攀登技术巅峰。
62 2
|
2月前
|
算法 程序员 Python
算法小白到大神的蜕变之路:Python分治法、贪心、动态规划,一步步带你走向算法巅峰!
【7月更文挑战第9天】探索算法之旅,以Python解锁编程高手之路。分治法如二分查找,将复杂问题拆解;贪心算法解决活动选择,每次选取局部最优;动态规划求斐波那契数列,避免重复计算,实现全局最优。每一步学习,都是编程能力的升华,助你应对复杂挑战,迈向算法大师!
35 1
|
2月前
|
存储 算法 Python
Python算法界的秘密武器:分治法巧解难题,贪心算法快速决策,动态规划优化未来!
【7月更文挑战第9天】Python中的分治、贪心和动态规划是三大关键算法。分治法将大问题分解为小问题求解,如归并排序;贪心算法每步选局部最优解,不保证全局最优,如找零钱;动态规划存储子问题解求全局最优,如斐波那契数列。选择合适算法能提升编程效率。
49 1
|
2月前
|
存储 算法 Python
震撼!Python算法设计与分析,分治法、贪心、动态规划...这些经典算法如何改变你的编程世界!
【7月更文挑战第9天】在Python的算法天地,分治、贪心、动态规划三巨头揭示了解题的智慧。分治如归并排序,将大问题拆解为小部分解决;贪心算法以局部最优求全局,如Prim的最小生成树;动态规划通过存储子问题解避免重复计算,如斐波那契数列。掌握这些,将重塑你的编程思维,点亮技术之路。
51 1
|
2月前
|
存储 算法 大数据
Python算法高手的必修课:深入理解分治法、贪心算法、动态规划,让你的代码更智能!
【7月更文挑战第9天】在Python算法学习中,分治法(如归并排序)将大问题分解为小部分递归解决;贪心算法(如货币找零)在每步选择局部最优解尝试达到全局最优;动态规划(如斐波那契数列)通过存储子问题解避免重复计算,解决重叠子问题。掌握这三种方法能提升代码效率,解决复杂问题。
35 1
|
2月前
|
算法 索引 Python
逆袭算法界!Python分治法、贪心算法、动态规划深度剖析,带你走出算法迷宫!
【7月更文挑战第8天】分治法,如快速排序,将大问题分解并合并解;贪心算法,选择局部最优解,如活动选择;动态规划,利用最优子结构避免重复计算,如斐波那契数列。Python示例展示这些算法如何解决实际问题,助你精通算法,勇闯迷宫。
30 1