阿里P8架构师谈:Zookeeper的原理和架构设计,以及应用场景

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 随着信息化水平的不断提高,企业级应用系统变得越来越庞大,性能随之下降,用户抱怨频频。拆分系统是目前我们可选择的解决系统可伸缩性和性能问题的唯一行之有效的方法。但是拆分系统同时也带来了系统的复杂性——各子系统不是孤立存在的,它们彼此之间需要协作和交互(分布式系统)。

随着信息化水平的不断提高,企业级应用系统变得越来越庞大,性能随之下降,用户抱怨频频。拆分系统是目前我们可选择的解决系统可伸缩性和性能问题的唯一行之有效的方法。但是拆分系统同时也带来了系统的复杂性——各子系统不是孤立存在的,它们彼此之间需要协作和交互(分布式系统)。各个子系统就好比动物园里的动物,为了使各个子系统能正常为用户提供统一的服务,必须需要一种机制来进行协调——这就是ZooKeeper(动物园管理员)。下面详解:

什么是 Zookeeper

Zookeeper 分布式服务框架是Apache Hadoop 的一个子项目,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,如:

  1. 统一命名服务;
    2.状态同步服务;

3.集群管理;
4.分布式应用配置项的管理等。

Zookeeper已经成为Hadoop生态系统中的基础组件。

Zookeeper的基本原理和架构

1、Zookeeper的角色

  • 领导者(leader):负责进行投票的发起和决议,更新系统状态;
  • 学习者(learner):包括跟随者(follower)和观察者(observer),follower用于接受客户端请求并想客户端返回结果,在选主过程中参与投票;
  • Observer:可以接受客户端连接,将写请求转发给leader,但observer不参加投票过程,只同步leader的状态,observer的目的是为了扩展系统,提高读取速度;
  • 客户端(client):请求发起方。

1

2

• Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。

• 为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。

• 每个Server在工作过程中有三种状态:

LOOKING:当前Server不知道leader是谁,正在搜寻

LEADING:当前Server即为选举出来的leader

FOLLOWING:leader已经选举出来,当前Server与之同步

2、Zookeeper 的读写机制

  • Zookeeper是一个由多个server组成的集群;
  • 一个leader,多个follower;
  • 每个server保存一份数据副本;
  • 全局数据一致;
  • 分布式读写;
  • 更新请求转发,由leader实施。

3、Zookeeper 的保证 

更新请求顺序进行,来自同一个client的更新请求按其发送顺序依次执行;
数据更新原子性,一次数据更新要么成功,要么失败;
全局唯一数据视图,client无论连接到哪个server,数据视图都是一致的;
实时性,在一定事件范围内,client能读到最新数据。

4、Zookeeper节点数据操作流程

3

在Client向Follwer发出一个写的请求
Follwer把请求发送给Leader
Leader接收到以后开始发起投票并通知Follwer进行投票
Follwer把投票结果发送给Leader
Leader将结果汇总后如果需要写入,则开始写入同时把写入操作通知给Leader,然后commit;
Follwer把请求结果返回给Client

5、Zookeeper工作原理

Zookeeper的核心是原子广播,这个机制保证了各个server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是:恢复模式和广播模式。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数server的完成了和leader的状态同步以后,恢复模式就结束了。

6、数据一致性与paxos 算法

• 据说Paxos算法的难理解与算法的知名度一样令人敬仰,所以我们先看如何保持数据的一致性,这里有个原则就是:

• 在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。

• Paxos算法解决的什么问题呢,解决的就是保证每个节点执行相同的操作序列。好吧,这还不简单,master维护一个全局写队列,所有写操作都必须 放入这个队列编号,那么无论我们写多少个节点,只要写操作是按编号来的,就能保证一致性。没错,就是这样,可是如果master挂了呢。

• Paxos算法通过投票来对写操作进行全局编号,同一时刻,只有一个写操作被批准,同时并发的写操作要去争取选票,只有获得过半数选票的写操作才会被 批准(所以永远只会有一个写操作得到批准),其他的写操作竞争失败只好再发起一轮投票,就这样,在日复一日年复一年的投票中,所有写操作都被严格编号排 序。编号严格递增,当一个节点接受了一个编号为100的写操作,之后又接受到编号为99的写操作(因为网络延迟等很多不可预见原因),它马上能意识到自己 数据不一致了,自动停止对外服务并重启同步过程。任何一个节点挂掉都不会影响整个集群的数据一致性(总2n+1台,除非挂掉大于n台)。

总结:Zookeeper 作为 Hadoop 项目中的一个子项目,是 Hadoop 集群管理的一个必不可少的模块,它主要用来控制集群中的数据,如它管理 Hadoop 集群中的 NameNode,还有 Hbase 中 Master Election、Server 之间状态同步等。关于Paxos算法可以查看文章《Zookeeper全解析——Paxos作为灵魂》,推荐书籍:《从Paxos到Zookeeper分布式一致性原理与实践》。

7、Observer

  • Zookeeper需保证高可用和强一致性;
  • 为了支持更多的客户端,需要增加更多Server;
  • Server增多,投票阶段延迟增大,影响性能;
  • 权衡伸缩性和高吞吐率,引入Observer;
  • Observer不参与投票;
  • Observers接受客户端的连接,并将写请求转发给leader节点;
  • 加入更多Observer节点,提高伸缩性,同时不影响吞吐率。

8、 为什么zookeeper集群的数目,一般为奇数个?

  • Leader选举算法采用了Paxos协议;
  • Paxos核心思想:当多数Server写成功,则任务数据写成功如果有3个Server,则两个写成功即可;如果有4或5个Server,则三个写成功即可;
  • Server数目一般为奇数(3、5、7)如果有3个Server,则最多允许1个Server挂掉;如果有4个Server,则同样最多允许1个Server挂掉由此,我们看出3台服务器和4台服务器的的容灾能力是一样的,所以为了节省服务器资源,一般我们采用奇数个数,作为服务器部署个数。

9、Zookeeper 的数据模型 

  • 层次化的目录结构,命名符合常规文件系统规范;
  • 每个节点在zookeeper中叫做znode,并且其有一个唯一的路径标识;
  • 节点Znode可以包含数据和子节点,但是EPHEMERAL类型的节点不能有子节点;
  • Znode中的数据可以有多个版本,比如某一个路径下存有多个数据版本,那么查询这个路径下的数据就需要带上版本;
  • 客户端应用可以在节点上设置监视器;
  • 节点不支持部分读写,而是一次性完整读写。

10、Zookeeper 的节点

  • Znode有两种类型,短暂的(ephemeral)和持久的(persistent);
  • Znode的类型在创建时确定并且之后不能再修改;
  • 短暂znode的客户端会话结束时,zookeeper会将该短暂znode删除,短暂znode不可以有子节点;
  • 持久znode不依赖于客户端会话,只有当客户端明确要删除该持久znode时才会被删除;
  • Znode有四种形式的目录节点;
  • PERSISTENT(持久的);
  • EPHEMERAL(暂时的);
  • PERSISTENT_SEQUENTIAL(持久化顺序编号目录节点);
  • EPHEMERAL_SEQUENTIAL(暂时化顺序编号目录节点)。

Zookeeper的应用场景

1. 配置管理

这个好理解,分布式系统都有好多机器,比如我在搭建hadoop的HDFS的时候,需要在一个主机器上(Master节点)配置好HDFS需要的各种配置文件,然后通过scp命令把这些配置文件拷贝到其他节点上,这样各个机器拿到的配置信息是一致的,才能成功运行起来HDFS服务。

Zookeeper提供了这样的一种服务:一种集中管理配置的方法,我们在这个集中的地方修改了配置,所有对这个配置感兴趣的都可以获得变更。这样就省去手动拷贝配置了,还保证了可靠和一致性。

2. 名字服务

这个可以简单理解为一个电话薄,电话号码不好记,但是人名好记,要打谁的电话,直接查人名就好了。分布式环境下,经常需要对应用/服务进行统一命名,便于识别不同服务;

类似于域名与ip之间对应关系,域名容易记住;
通过名称来获取资源或服务的地址,提供者等信息。

3. 分布式锁

碰到分布二字貌似就难理解了,其实很简单。单机程序的各个进程需要对互斥资源进行访问时需要加锁,那分布式程序分布在各个主机上的进程对互斥资源进行访问时也需要加锁。很多分布式系统有多个可服务的窗口,但是在某个时刻只让一个服务去干活,当这台服务出问题的时候锁释放,立即fail over到另外的服务。这在很多分布式系统中都是这么做,这种设计有一个更好听的名字叫Leader Election(leader选举)。举个通俗点的例子,比如银行取钱,有多个窗口,但是呢对你来说,只能有一个窗口对你服务,如果正在对你服务的窗口的柜员突然有急事走了,那咋办?找大堂经理(zookeeper)!大堂经理指定另外的一个窗口继续为你服务!

4. 集群管理

在分布式的集群中,经常会由于各种原因,比如硬件故障,软件故障,网络问题,有些节点会进进出出。有新的节点加入进来,也有老的节点退出集群。这个时候,集群中有些机器(比如Master节点)需要感知到这种变化,然后根据这种变化做出对应的决策。我已经知道HDFS中namenode是通过datanode的心跳机制来实现上述感知的,那么我们可以先假设Zookeeper其实也是实现了类似心跳机制的功能吧!

往期博文:

码了几年代码的程序员,有一定的开发经验,应该如何提升自己?

分布式消息系列:详解RocketMQ的简介与演进、架构设计、关键特性与应用场景

高并发架构系列:Kafka、RocketMQ、RabbitMQ的优劣势比较

Java 面试题目最全集合1000+ 大放送,能答对70%就去BATJTMD试试~

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
12天前
|
存储 缓存 监控
ClickHouse 架构原理及核心特性详解
ClickHouse 是由 Yandex 开发的开源列式数据库,专为 OLAP 场景设计,支持高效的大数据分析。其核心特性包括列式存储、字段压缩、丰富的数据类型、向量化执行和分布式查询。ClickHouse 通过多种表引擎(如 MergeTree、ReplacingMergeTree、SummingMergeTree)优化了数据写入和查询性能,适用于电商数据分析、日志分析等场景。然而,它在事务处理、单条数据更新删除及内存占用方面存在不足。
132 21
|
12天前
|
存储 消息中间件 druid
Druid 架构原理及核心特性详解
Druid 是一个分布式、支持实时多维OLAP分析的列式存储数据处理系统,适用于高速实时数据读取和灵活的多维数据分析。它通过Segment、Datasource等元数据概念管理数据,并依赖Zookeeper、Hadoop和Kafka等组件实现高可用性和扩展性。Druid采用列式存储、并行计算和预计算等技术优化查询性能,支持离线和实时数据分析。尽管其存储成本较高且查询语言功能有限,但在大数据实时分析领域表现出色。
54 19
|
9天前
|
Java 网络安全 开发工具
Git进阶笔记系列(01)Git核心架构原理 | 常用命令实战集合
通过本文,读者可以深入了解Git的核心概念和实际操作技巧,提升版本管理能力。
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
一文彻底讲透GPT架构及推理原理
本篇是作者从开发人员的视角,围绕着大模型正向推理过程,对大模型的原理的系统性总结,希望对初学者有所帮助。
|
2月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
3月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
72 3
|
3月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
2月前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
243 69
从单体到微服务:如何借助 Spring Cloud 实现架构转型
|
2月前
|
设计模式 负载均衡 监控
探索微服务架构下的API网关设计
在微服务的大潮中,API网关如同一座桥梁,连接着服务的提供者与消费者。本文将深入探讨API网关的核心功能、设计原则及实现策略,旨在为读者揭示如何构建一个高效、可靠的API网关。通过分析API网关在微服务架构中的作用和挑战,我们将了解到,一个优秀的API网关不仅要处理服务路由、负载均衡、认证授权等基础问题,还需考虑如何提升系统的可扩展性、安全性和可维护性。文章最后将提供实用的代码示例,帮助读者更好地理解和应用API网关的设计概念。
92 8
|
3月前
|
Dubbo Java 应用服务中间件
服务架构的演进:从单体到微服务的探索之旅
随着企业业务的不断拓展和复杂度的提升,对软件系统架构的要求也日益严苛。传统的架构模式在应对现代业务场景时逐渐暴露出诸多局限性,于是服务架构开启了持续演变之路。从单体架构的简易便捷,到分布式架构的模块化解耦,再到微服务架构的精细化管理,企业对技术的选择变得至关重要,尤其是 Spring Cloud 和 Dubbo 等微服务技术的对比和应用,直接影响着项目的成败。 本篇文章会从服务架构的演进开始分析,探索从单体项目到微服务项目的演变过程。然后也会对目前常见的微服务技术进行对比,找到目前市面上所常用的技术给大家进行讲解。
88 1
服务架构的演进:从单体到微服务的探索之旅

热门文章

最新文章